Göran Baade, Jens Friedland, Koustuv Ray and Robert Güttel
{"title":"钌上的 CO2 加氢:催化剂载体的比较研究†。","authors":"Göran Baade, Jens Friedland, Koustuv Ray and Robert Güttel","doi":"10.1039/D4SU00469H","DOIUrl":null,"url":null,"abstract":"<p >To achieve a significant reduction in anthropogenic CO<small><sub>2</sub></small> in the near future, captured carbon has to be valorized. To this end, CO<small><sub>2</sub></small> may be activated using H<small><sub>2</sub></small> to form sustainable fuels (synthetic natural gas), platform chemicals (methanol) and higher hydrocarbons (modified Fischer–Tropsch process). In this work we synthesize Ru based catalysts from various commercially available support materials and test them under lower temperatures than usually employed at various partial pressures of CO<small><sub>2</sub></small> and H<small><sub>2</sub></small> using methanation as a model reaction. The results show Ru/TiO<small><sub>2</sub></small>, Ru/ZrO<small><sub>2</sub></small> and Ru/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> as the most active catalysts with high activity, selectivity towards methane (>95%), and stability with little to no deactivation over 80 h. These most promising catalysts are further tested and kinetic parameters determined, which find reaction orders and activation energies in agreement with literature, but differing from catalyst to catalyst, hinting at complex reaction mechanisms including the support as well as the Ru. The TOF calculated for Ru/TiO<small><sub>2</sub></small> at 190 °C is 5.7 s<small><sup>−1</sup></small> and highlights it as the most active catalyst in this work. The study opens new and promising avenues for the valorization of CO<small><sub>2</sub></small>, as well as a basis to compare future optimizations and advances in the field of Ru-based CO<small><sub>2</sub></small> conversion.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 12","pages":" 3826-3834"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00469h?page=search","citationCount":"0","resultStr":"{\"title\":\"CO2 hydrogenation on ruthenium: comparative study of catalyst supports†\",\"authors\":\"Göran Baade, Jens Friedland, Koustuv Ray and Robert Güttel\",\"doi\":\"10.1039/D4SU00469H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To achieve a significant reduction in anthropogenic CO<small><sub>2</sub></small> in the near future, captured carbon has to be valorized. To this end, CO<small><sub>2</sub></small> may be activated using H<small><sub>2</sub></small> to form sustainable fuels (synthetic natural gas), platform chemicals (methanol) and higher hydrocarbons (modified Fischer–Tropsch process). In this work we synthesize Ru based catalysts from various commercially available support materials and test them under lower temperatures than usually employed at various partial pressures of CO<small><sub>2</sub></small> and H<small><sub>2</sub></small> using methanation as a model reaction. The results show Ru/TiO<small><sub>2</sub></small>, Ru/ZrO<small><sub>2</sub></small> and Ru/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> as the most active catalysts with high activity, selectivity towards methane (>95%), and stability with little to no deactivation over 80 h. These most promising catalysts are further tested and kinetic parameters determined, which find reaction orders and activation energies in agreement with literature, but differing from catalyst to catalyst, hinting at complex reaction mechanisms including the support as well as the Ru. The TOF calculated for Ru/TiO<small><sub>2</sub></small> at 190 °C is 5.7 s<small><sup>−1</sup></small> and highlights it as the most active catalyst in this work. The study opens new and promising avenues for the valorization of CO<small><sub>2</sub></small>, as well as a basis to compare future optimizations and advances in the field of Ru-based CO<small><sub>2</sub></small> conversion.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 12\",\"pages\":\" 3826-3834\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00469h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00469h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00469h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CO2 hydrogenation on ruthenium: comparative study of catalyst supports†
To achieve a significant reduction in anthropogenic CO2 in the near future, captured carbon has to be valorized. To this end, CO2 may be activated using H2 to form sustainable fuels (synthetic natural gas), platform chemicals (methanol) and higher hydrocarbons (modified Fischer–Tropsch process). In this work we synthesize Ru based catalysts from various commercially available support materials and test them under lower temperatures than usually employed at various partial pressures of CO2 and H2 using methanation as a model reaction. The results show Ru/TiO2, Ru/ZrO2 and Ru/Al2O3 as the most active catalysts with high activity, selectivity towards methane (>95%), and stability with little to no deactivation over 80 h. These most promising catalysts are further tested and kinetic parameters determined, which find reaction orders and activation energies in agreement with literature, but differing from catalyst to catalyst, hinting at complex reaction mechanisms including the support as well as the Ru. The TOF calculated for Ru/TiO2 at 190 °C is 5.7 s−1 and highlights it as the most active catalyst in this work. The study opens new and promising avenues for the valorization of CO2, as well as a basis to compare future optimizations and advances in the field of Ru-based CO2 conversion.