David Izquierdo;Miguel Barrio;Pascual Sevillano;Jose A. Altabas;Ignacio Garces
{"title":"基于简化外差相干接收的 100 Gb/s/λ 偏振多路复用 PON 下行链路","authors":"David Izquierdo;Miguel Barrio;Pascual Sevillano;Jose A. Altabas;Ignacio Garces","doi":"10.1364/JOCN.530478","DOIUrl":null,"url":null,"abstract":"In this work, we experimentally demonstrate a \n<tex>${100}\\;{\\rm Gb/s/}\\lambda$</tex>\n downstream transmission link for coherent passive optical networks (PONs) up to 50 km, achieving an optical power budget of 29 dB through polarization multiplexing (PolMux) of two 50 Gb/s channels using multiband carrierless amplitude phase modulation (multiCAP) and optical single side band (OSSB) modulation. Additionally, we introduce a separate PolMux 50 Gb/s link that presents an optical power budget of 38.7 dB. Both links have been achieved using a simplified polarization-demultiplexing heterodyne coherent receiver. The robustness of the system is experimentally evaluated by analyzing its response to various input states of polarization. The transmission has been accomplished using 10 GHz electrical bandwidth devices at both the transmission and receiving ends, thereby paving the way for low-cost 100G links suitable for applications such as PONs.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 12","pages":"1241-1248"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769995","citationCount":"0","resultStr":"{\"title\":\"100 Gb/s/λ polarization multiplexing PON downlink based on simplified heterodyne coherent reception\",\"authors\":\"David Izquierdo;Miguel Barrio;Pascual Sevillano;Jose A. Altabas;Ignacio Garces\",\"doi\":\"10.1364/JOCN.530478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we experimentally demonstrate a \\n<tex>${100}\\\\;{\\\\rm Gb/s/}\\\\lambda$</tex>\\n downstream transmission link for coherent passive optical networks (PONs) up to 50 km, achieving an optical power budget of 29 dB through polarization multiplexing (PolMux) of two 50 Gb/s channels using multiband carrierless amplitude phase modulation (multiCAP) and optical single side band (OSSB) modulation. Additionally, we introduce a separate PolMux 50 Gb/s link that presents an optical power budget of 38.7 dB. Both links have been achieved using a simplified polarization-demultiplexing heterodyne coherent receiver. The robustness of the system is experimentally evaluated by analyzing its response to various input states of polarization. The transmission has been accomplished using 10 GHz electrical bandwidth devices at both the transmission and receiving ends, thereby paving the way for low-cost 100G links suitable for applications such as PONs.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 12\",\"pages\":\"1241-1248\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769995\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10769995/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10769995/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
100 Gb/s/λ polarization multiplexing PON downlink based on simplified heterodyne coherent reception
In this work, we experimentally demonstrate a
${100}\;{\rm Gb/s/}\lambda$
downstream transmission link for coherent passive optical networks (PONs) up to 50 km, achieving an optical power budget of 29 dB through polarization multiplexing (PolMux) of two 50 Gb/s channels using multiband carrierless amplitude phase modulation (multiCAP) and optical single side band (OSSB) modulation. Additionally, we introduce a separate PolMux 50 Gb/s link that presents an optical power budget of 38.7 dB. Both links have been achieved using a simplified polarization-demultiplexing heterodyne coherent receiver. The robustness of the system is experimentally evaluated by analyzing its response to various input states of polarization. The transmission has been accomplished using 10 GHz electrical bandwidth devices at both the transmission and receiving ends, thereby paving the way for low-cost 100G links suitable for applications such as PONs.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.