Pengfei Ding, Zhenyu Chen, Daobin Yang, Xueliang Yu, Jingyu Shi, Yiyu Chen, Jintao Zhu, Jie Wu, Xinyue Cao, Lin Xie, Fei Chen, Ziyi Ge
{"title":"平衡有机太阳能电池效率和稳定性的 U 型二聚受体","authors":"Pengfei Ding, Zhenyu Chen, Daobin Yang, Xueliang Yu, Jingyu Shi, Yiyu Chen, Jintao Zhu, Jie Wu, Xinyue Cao, Lin Xie, Fei Chen, Ziyi Ge","doi":"10.1002/adma.202414080","DOIUrl":null,"url":null,"abstract":"Despite significant improvements in power conversion efficiencies (PCEs) of organic solar cells (OSCs), achieving excellent stability remains a great challenge to their commercial feasibility. Here, <i>U</i>-shaped dimeric acceptors (5-IDT and 6-IDT) with different molecular lengths are introduced into the binary OSCs as a third component, respectively. The introduction of the third component effectively reduces the energetic disorder and non-radiative voltage losses and improves the exciton dissociation and charge transport of the devices. Consequently, the PCEs of the 6-IDT- and 5-IDT-treated OSCs are significantly improved to 19.32% and 19.96%, respectively, which is the highest PCE for oligomeric acceptors-based ternary OSCs to date. Meanwhile, the thermal stability of the treated devices is dramatically improved, with the initial efficiency retention of the 6-IDT- and 5-IDT-treated devices increasing from 18% to 32% and 75%, respectively, after 1000 h of thermal stress. This is mainly attributed to the ability of the smaller molecular length of 5-IDT to stabilize the phase-separated morphology of the polymeric donor and small molecular acceptor, rather than the high glass transition temperature and low diffusion coefficient.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"9 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U-Shaped Dimeric Acceptors for Balancing Efficiency and Stability in Organic Solar Cells\",\"authors\":\"Pengfei Ding, Zhenyu Chen, Daobin Yang, Xueliang Yu, Jingyu Shi, Yiyu Chen, Jintao Zhu, Jie Wu, Xinyue Cao, Lin Xie, Fei Chen, Ziyi Ge\",\"doi\":\"10.1002/adma.202414080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant improvements in power conversion efficiencies (PCEs) of organic solar cells (OSCs), achieving excellent stability remains a great challenge to their commercial feasibility. Here, <i>U</i>-shaped dimeric acceptors (5-IDT and 6-IDT) with different molecular lengths are introduced into the binary OSCs as a third component, respectively. The introduction of the third component effectively reduces the energetic disorder and non-radiative voltage losses and improves the exciton dissociation and charge transport of the devices. Consequently, the PCEs of the 6-IDT- and 5-IDT-treated OSCs are significantly improved to 19.32% and 19.96%, respectively, which is the highest PCE for oligomeric acceptors-based ternary OSCs to date. Meanwhile, the thermal stability of the treated devices is dramatically improved, with the initial efficiency retention of the 6-IDT- and 5-IDT-treated devices increasing from 18% to 32% and 75%, respectively, after 1000 h of thermal stress. This is mainly attributed to the ability of the smaller molecular length of 5-IDT to stabilize the phase-separated morphology of the polymeric donor and small molecular acceptor, rather than the high glass transition temperature and low diffusion coefficient.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414080\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414080","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
U-Shaped Dimeric Acceptors for Balancing Efficiency and Stability in Organic Solar Cells
Despite significant improvements in power conversion efficiencies (PCEs) of organic solar cells (OSCs), achieving excellent stability remains a great challenge to their commercial feasibility. Here, U-shaped dimeric acceptors (5-IDT and 6-IDT) with different molecular lengths are introduced into the binary OSCs as a third component, respectively. The introduction of the third component effectively reduces the energetic disorder and non-radiative voltage losses and improves the exciton dissociation and charge transport of the devices. Consequently, the PCEs of the 6-IDT- and 5-IDT-treated OSCs are significantly improved to 19.32% and 19.96%, respectively, which is the highest PCE for oligomeric acceptors-based ternary OSCs to date. Meanwhile, the thermal stability of the treated devices is dramatically improved, with the initial efficiency retention of the 6-IDT- and 5-IDT-treated devices increasing from 18% to 32% and 75%, respectively, after 1000 h of thermal stress. This is mainly attributed to the ability of the smaller molecular length of 5-IDT to stabilize the phase-separated morphology of the polymeric donor and small molecular acceptor, rather than the high glass transition temperature and low diffusion coefficient.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.