T#2-Li0.69CoO2:用于锂离子电池的耐用、高容量、高倍率正极材料

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxuan Zuo, Jiahui Liu, Hangchao Wang, Ying Zou, Tie Luo, Kun Zhang, Yali Yang, Chuan Gao, Biao Li, Qiang Sun, Dingguo Xia
{"title":"T#2-Li0.69CoO2:用于锂离子电池的耐用、高容量、高倍率正极材料","authors":"Yuxuan Zuo,&nbsp;Jiahui Liu,&nbsp;Hangchao Wang,&nbsp;Ying Zou,&nbsp;Tie Luo,&nbsp;Kun Zhang,&nbsp;Yali Yang,&nbsp;Chuan Gao,&nbsp;Biao Li,&nbsp;Qiang Sun,&nbsp;Dingguo Xia","doi":"10.1002/adma.202412920","DOIUrl":null,"url":null,"abstract":"<p>Efficient utilization of resources is crucial for the sustainable development of the lithium-ion battery industry. Although the traditional <i>R</i><span></span><math>\n <semantics>\n <mover>\n <mn>3</mn>\n <mo>¯</mo>\n </mover>\n <annotation>$\\bar{3}$</annotation>\n </semantics></math><i>m</i> space group LiCoO<sub>2</sub> can provide a current advanced discharge capacity of 215–220 mAh g⁻¹ at an upper cut-off voltage of 4.6 V (relative to Li⁺/Li), it still falls far short of its theoretical specific capacity of 273 mAh g⁻¹, and exhibits structural instability and labile oxygen loss, leading to rapid capacity degradation. T<sup>#</sup>2-Li<sub>0.69</sub>CoO<sub>2</sub> is synthesized with <i>Cmca</i> space group and Li─O tetrahedral coordination. Owing to the unique Li─O tetrahedral coordination structure and the dominant cobalt oxidation under high voltage, T<sup>#</sup>2-Li<sub>0.69</sub>CoO<sub>2</sub> delivers an ultra-high specific capacity of 258 mAh g<sup>−1</sup>, close to the theoretical capacity, in liquid electrolyte batteries and 253 mAh g<sup>−1</sup> in solid state batteries, overcoming the structural instability of layered oxide cathodes during charging and discharging processes. This study broadens the possibilities of creating high energy-density cathodes for next-generation Li-ion batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 3","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T#2-Li0.69CoO2: A Durable, High-Capacity, High-Rate Cathode Material for Lithium-Ion Batteries\",\"authors\":\"Yuxuan Zuo,&nbsp;Jiahui Liu,&nbsp;Hangchao Wang,&nbsp;Ying Zou,&nbsp;Tie Luo,&nbsp;Kun Zhang,&nbsp;Yali Yang,&nbsp;Chuan Gao,&nbsp;Biao Li,&nbsp;Qiang Sun,&nbsp;Dingguo Xia\",\"doi\":\"10.1002/adma.202412920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient utilization of resources is crucial for the sustainable development of the lithium-ion battery industry. Although the traditional <i>R</i><span></span><math>\\n <semantics>\\n <mover>\\n <mn>3</mn>\\n <mo>¯</mo>\\n </mover>\\n <annotation>$\\\\bar{3}$</annotation>\\n </semantics></math><i>m</i> space group LiCoO<sub>2</sub> can provide a current advanced discharge capacity of 215–220 mAh g⁻¹ at an upper cut-off voltage of 4.6 V (relative to Li⁺/Li), it still falls far short of its theoretical specific capacity of 273 mAh g⁻¹, and exhibits structural instability and labile oxygen loss, leading to rapid capacity degradation. T<sup>#</sup>2-Li<sub>0.69</sub>CoO<sub>2</sub> is synthesized with <i>Cmca</i> space group and Li─O tetrahedral coordination. Owing to the unique Li─O tetrahedral coordination structure and the dominant cobalt oxidation under high voltage, T<sup>#</sup>2-Li<sub>0.69</sub>CoO<sub>2</sub> delivers an ultra-high specific capacity of 258 mAh g<sup>−1</sup>, close to the theoretical capacity, in liquid electrolyte batteries and 253 mAh g<sup>−1</sup> in solid state batteries, overcoming the structural instability of layered oxide cathodes during charging and discharging processes. This study broadens the possibilities of creating high energy-density cathodes for next-generation Li-ion batteries.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 3\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202412920\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202412920","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

资源的高效利用对于锂离子电池行业的可持续发展至关重要。传统的 R3¯$\bar{3}$m 空间群 LiCoO2 虽然能在 4.6 V(相对于 Li⁺/Li)的上限截止电压下提供 215-220 mAh g-¹ 的当前先进放电容量,但仍远未达到其 273 mAh g-¹ 的理论比容量,并且表现出结构不稳定性和可变氧损耗,导致容量快速衰减。T#2-Li0.69CoO2 是以 Cmca 空间群和 Li─O 四面体配位合成的。由于独特的 Li─O 四面体配位结构和高电压下的主要钴氧化作用,T#2-Li0.69CoO2 在液态电解质电池中可提供 258 mAh g-1 的超高比容量,接近理论容量;在固态电池中可提供 253 mAh g-1 的超高比容量,克服了层状氧化物阴极在充电和放电过程中的结构不稳定性。这项研究拓宽了为下一代锂离子电池制造高能量密度阴极的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

T#2-Li0.69CoO2: A Durable, High-Capacity, High-Rate Cathode Material for Lithium-Ion Batteries

T#2-Li0.69CoO2: A Durable, High-Capacity, High-Rate Cathode Material for Lithium-Ion Batteries

Efficient utilization of resources is crucial for the sustainable development of the lithium-ion battery industry. Although the traditional R 3 ¯ $\bar{3}$ m space group LiCoO2 can provide a current advanced discharge capacity of 215–220 mAh g⁻¹ at an upper cut-off voltage of 4.6 V (relative to Li⁺/Li), it still falls far short of its theoretical specific capacity of 273 mAh g⁻¹, and exhibits structural instability and labile oxygen loss, leading to rapid capacity degradation. T#2-Li0.69CoO2 is synthesized with Cmca space group and Li─O tetrahedral coordination. Owing to the unique Li─O tetrahedral coordination structure and the dominant cobalt oxidation under high voltage, T#2-Li0.69CoO2 delivers an ultra-high specific capacity of 258 mAh g−1, close to the theoretical capacity, in liquid electrolyte batteries and 253 mAh g−1 in solid state batteries, overcoming the structural instability of layered oxide cathodes during charging and discharging processes. This study broadens the possibilities of creating high energy-density cathodes for next-generation Li-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信