用于千瓦级碱性海水电解的耐腐蚀镍铁合金阳极

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaogang Sun, Wei Shen, Hao Liu, Pinxian Xi, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao
{"title":"用于千瓦级碱性海水电解的耐腐蚀镍铁合金阳极","authors":"Xiaogang Sun, Wei Shen, Hao Liu, Pinxian Xi, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao","doi":"10.1038/s41467-024-54754-5","DOIUrl":null,"url":null,"abstract":"<p>Development of large-scale alkaline seawater electrolysis requires robust and corrosion-resistant anodes. Here we propose engineering NiFe layered double hydroxide (LDH)-based anodes by incorporating a series of anions into the LDH interlayers. The most optimal NiFe LDH anode with intercalated phosphates demonstrates stable operation at a high current density of 1.0 A cm<sup>−2</sup> for over 1000 hours in a 2 W-scale alkaline seawater electrolyzer (ASWE). Fundamental studies indicate that the basicity, indicated by p<i>K</i><sub>a</sub> values, of the intercalated anions in NiFe LDH governs its oxygen evolution reaction activity and corrosion resistance. Highly basic anions (i.e., phosphates) securely anchor Fe sites and facilitate proton transfer to boost both durability and activity. Notably, we demonstrate the proof-of-concept for the NiFe anode in an industrial 1 kW-scale ASWE stack (1,081.2 cm<sup>2</sup> anode area in total). This unit achieves a stable operating current density of 0.5 A cm<sup>−2</sup> at about 2.0 V, twice that of the commercial alkaline pure water electrolyzer, contributing to an economically competitive hydrogen production cost of US$ 1.96 kg<sub>H2</sub><sup>−1</sup>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis\",\"authors\":\"Xiaogang Sun, Wei Shen, Hao Liu, Pinxian Xi, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao\",\"doi\":\"10.1038/s41467-024-54754-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Development of large-scale alkaline seawater electrolysis requires robust and corrosion-resistant anodes. Here we propose engineering NiFe layered double hydroxide (LDH)-based anodes by incorporating a series of anions into the LDH interlayers. The most optimal NiFe LDH anode with intercalated phosphates demonstrates stable operation at a high current density of 1.0 A cm<sup>−2</sup> for over 1000 hours in a 2 W-scale alkaline seawater electrolyzer (ASWE). Fundamental studies indicate that the basicity, indicated by p<i>K</i><sub>a</sub> values, of the intercalated anions in NiFe LDH governs its oxygen evolution reaction activity and corrosion resistance. Highly basic anions (i.e., phosphates) securely anchor Fe sites and facilitate proton transfer to boost both durability and activity. Notably, we demonstrate the proof-of-concept for the NiFe anode in an industrial 1 kW-scale ASWE stack (1,081.2 cm<sup>2</sup> anode area in total). This unit achieves a stable operating current density of 0.5 A cm<sup>−2</sup> at about 2.0 V, twice that of the commercial alkaline pure water electrolyzer, contributing to an economically competitive hydrogen production cost of US$ 1.96 kg<sub>H2</sub><sup>−1</sup>.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54754-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54754-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大规模碱性海水电解的开发需要坚固耐用且耐腐蚀的阳极。在此,我们提出通过在层状双氢氧化物(LDH)夹层中加入一系列阴离子,对基于层状双氢氧化物(LDH)的镍铁合金阳极进行工程设计。含有插层磷酸盐的最佳镍铁层状双氢氧化物阳极在 2 W 规模的碱性海水电解槽(ASWE)中以 1.0 A cm-2 的高电流密度稳定运行超过 1000 小时。基础研究表明,NiFe LDH 中插层阴离子的碱性(以 pKa 值表示)决定了其氧进化反应活性和耐腐蚀性。高碱性阴离子(即磷酸盐)能牢牢锚定铁位点,促进质子传递,从而提高耐久性和活性。值得注意的是,我们在一个 1 kW 规模的工业 ASWE 堆(阳极总面积为 1,081.2 平方厘米)中展示了镍铁合金阳极的概念验证。该装置在 2.0 V 左右的电压下可达到 0.5 A cm-2 的稳定工作电流密度,是商用碱性纯水电解槽的两倍,从而使氢气生产成本降至 1.96 kgH2-1 美元,具有经济竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis

Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis

Development of large-scale alkaline seawater electrolysis requires robust and corrosion-resistant anodes. Here we propose engineering NiFe layered double hydroxide (LDH)-based anodes by incorporating a series of anions into the LDH interlayers. The most optimal NiFe LDH anode with intercalated phosphates demonstrates stable operation at a high current density of 1.0 A cm−2 for over 1000 hours in a 2 W-scale alkaline seawater electrolyzer (ASWE). Fundamental studies indicate that the basicity, indicated by pKa values, of the intercalated anions in NiFe LDH governs its oxygen evolution reaction activity and corrosion resistance. Highly basic anions (i.e., phosphates) securely anchor Fe sites and facilitate proton transfer to boost both durability and activity. Notably, we demonstrate the proof-of-concept for the NiFe anode in an industrial 1 kW-scale ASWE stack (1,081.2 cm2 anode area in total). This unit achieves a stable operating current density of 0.5 A cm−2 at about 2.0 V, twice that of the commercial alkaline pure water electrolyzer, contributing to an economically competitive hydrogen production cost of US$ 1.96 kgH2−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信