火力发电厂软计算技术实时应用综述。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Love Kumar Thawait, Mukesh Kumar Singh
{"title":"火力发电厂软计算技术实时应用综述。","authors":"Love Kumar Thawait, Mukesh Kumar Singh","doi":"10.1080/0954898X.2024.2429721","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal Power Plant is a common power plant that generates power by fuel-burning to produce electricity. Being a significant component of the energy sector, the Thermal Power Plant faces several issues that lead to reduced productivity. Conventional researchers have tried using different mechanisms for improvising the production of Thermal Power Plants in varied dimensions. Due to the diverse dimensions considered by existing works, the present review endeavours to afford a comprehensive summary of these works. To achieve this, the study reviews articles in the range (2019-2023) that are allied with the utility of SC methodologies (encompassing AI-ML (Machine Learning) and DL (Deep Learning) in enhancing the productivity of Thermal Power Plants by various dimensions. The conventional AI-based approaches are comparatively evaluated for effective contribution in improvising Thermal Power Plant production. Following this, a critical assessment encompasses the year-wise distribution and varied dimensions focussed by traditional studies in this area. This would support future researchers in determining the dimensions that have attained limited and high focus based on which appropriate research works can be performed. Finally, future suggestions and research gaps are included to offer new stimulus for further investigation of AI in Thermal Power Plants.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-37"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on real time implementation of soft computing techniques in thermal power plant.\",\"authors\":\"Love Kumar Thawait, Mukesh Kumar Singh\",\"doi\":\"10.1080/0954898X.2024.2429721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermal Power Plant is a common power plant that generates power by fuel-burning to produce electricity. Being a significant component of the energy sector, the Thermal Power Plant faces several issues that lead to reduced productivity. Conventional researchers have tried using different mechanisms for improvising the production of Thermal Power Plants in varied dimensions. Due to the diverse dimensions considered by existing works, the present review endeavours to afford a comprehensive summary of these works. To achieve this, the study reviews articles in the range (2019-2023) that are allied with the utility of SC methodologies (encompassing AI-ML (Machine Learning) and DL (Deep Learning) in enhancing the productivity of Thermal Power Plants by various dimensions. The conventional AI-based approaches are comparatively evaluated for effective contribution in improvising Thermal Power Plant production. Following this, a critical assessment encompasses the year-wise distribution and varied dimensions focussed by traditional studies in this area. This would support future researchers in determining the dimensions that have attained limited and high focus based on which appropriate research works can be performed. Finally, future suggestions and research gaps are included to offer new stimulus for further investigation of AI in Thermal Power Plants.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-37\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2429721\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2429721","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

火力发电厂是一种通过燃烧燃料发电的普通发电厂。作为能源行业的重要组成部分,火力发电厂面临着导致生产率降低的若干问题。传统的研究人员尝试使用不同的机制,从不同的维度提高火力发电厂的生产效率。由于现有著作考虑了不同的方面,本综述试图对这些著作进行全面总结。为实现这一目标,本研究回顾了(2019-2023 年)范围内与 SC 方法(包括 AI-ML(机器学习)和 DL(深度学习))在不同维度提高火力发电厂生产率方面的实用性相关的文章。对基于人工智能的传统方法进行比较评估,以确定其在提高火力发电厂生产率方面的有效贡献。随后,对该领域传统研究的年度分布和关注的不同维度进行了批判性评估。这将有助于未来的研究人员确定重点有限和重点突出的方面,并据此开展适当的研究工作。最后,还提出了未来建议和研究缺口,为进一步研究火力发电厂中的人工智能提供新的动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on real time implementation of soft computing techniques in thermal power plant.

Thermal Power Plant is a common power plant that generates power by fuel-burning to produce electricity. Being a significant component of the energy sector, the Thermal Power Plant faces several issues that lead to reduced productivity. Conventional researchers have tried using different mechanisms for improvising the production of Thermal Power Plants in varied dimensions. Due to the diverse dimensions considered by existing works, the present review endeavours to afford a comprehensive summary of these works. To achieve this, the study reviews articles in the range (2019-2023) that are allied with the utility of SC methodologies (encompassing AI-ML (Machine Learning) and DL (Deep Learning) in enhancing the productivity of Thermal Power Plants by various dimensions. The conventional AI-based approaches are comparatively evaluated for effective contribution in improvising Thermal Power Plant production. Following this, a critical assessment encompasses the year-wise distribution and varied dimensions focussed by traditional studies in this area. This would support future researchers in determining the dimensions that have attained limited and high focus based on which appropriate research works can be performed. Finally, future suggestions and research gaps are included to offer new stimulus for further investigation of AI in Thermal Power Plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信