Cai Chen, Zhanyu Du, Yao Zheng, Hong Chen, Ahmed A Saleh, Naisu Yang, Mengli Wang, Phiri Azele, Xiaoyan Wang, Chengyi Song
{"title":"猪内源性逆转录病毒(ERVs)中由梭罗长末端重复序列(Solo-LTRs)诱导的多态性研究。","authors":"Cai Chen, Zhanyu Du, Yao Zheng, Hong Chen, Ahmed A Saleh, Naisu Yang, Mengli Wang, Phiri Azele, Xiaoyan Wang, Chengyi Song","doi":"10.3390/v16111801","DOIUrl":null,"url":null,"abstract":"<p><p>Homologous recombination events take place between the 5' and 3' long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, resulting in an average of 5630 solo-LTRs being identified in 21 genomes. Subsequently, a protocol was developed for detecting solo-LTR polymorphisms in the pig genomes, resulting in the discovery of 927 predicted solo-LTR polymorphic sites. Following verification and filtration processes, 603 highly reliable solo-LTR polymorphic sites were retained, involving 446 solo-LTR presence sites (solo-LTR<sup>+</sup>) and 157 solo-LTR absence sites (solo-LTR<sup>-</sup>) relative to the reference genome. Intersection analysis with gene/functional regions revealed that 248 solo-LTR<sup>-</sup> sites and 23 solo-LTR<sup>+</sup> sites overlapped with genes or were in the vicinity of genes or functional regions, impacting a diverse range of gene structures. Moreover, through the utilization of 156 solo-LTR polymorphic sites for population genetic analysis, it was observed that these solo-LTR loci effectively clustered various breeds together, aligning with expectations and underscoring their practical utility. This study successfully established a methodology for detecting solo-LTR polymorphic sites. By applying these methods, a total of 603 high-reliability solo-LTR polymorphic sites were pinpointed, with nearly half of them being linked to genes or functional regions.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"16 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs).\",\"authors\":\"Cai Chen, Zhanyu Du, Yao Zheng, Hong Chen, Ahmed A Saleh, Naisu Yang, Mengli Wang, Phiri Azele, Xiaoyan Wang, Chengyi Song\",\"doi\":\"10.3390/v16111801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Homologous recombination events take place between the 5' and 3' long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, resulting in an average of 5630 solo-LTRs being identified in 21 genomes. Subsequently, a protocol was developed for detecting solo-LTR polymorphisms in the pig genomes, resulting in the discovery of 927 predicted solo-LTR polymorphic sites. Following verification and filtration processes, 603 highly reliable solo-LTR polymorphic sites were retained, involving 446 solo-LTR presence sites (solo-LTR<sup>+</sup>) and 157 solo-LTR absence sites (solo-LTR<sup>-</sup>) relative to the reference genome. Intersection analysis with gene/functional regions revealed that 248 solo-LTR<sup>-</sup> sites and 23 solo-LTR<sup>+</sup> sites overlapped with genes or were in the vicinity of genes or functional regions, impacting a diverse range of gene structures. Moreover, through the utilization of 156 solo-LTR polymorphic sites for population genetic analysis, it was observed that these solo-LTR loci effectively clustered various breeds together, aligning with expectations and underscoring their practical utility. This study successfully established a methodology for detecting solo-LTR polymorphic sites. By applying these methods, a total of 603 high-reliability solo-LTR polymorphic sites were pinpointed, with nearly half of them being linked to genes or functional regions.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"16 11\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v16111801\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16111801","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs).
Homologous recombination events take place between the 5' and 3' long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, resulting in an average of 5630 solo-LTRs being identified in 21 genomes. Subsequently, a protocol was developed for detecting solo-LTR polymorphisms in the pig genomes, resulting in the discovery of 927 predicted solo-LTR polymorphic sites. Following verification and filtration processes, 603 highly reliable solo-LTR polymorphic sites were retained, involving 446 solo-LTR presence sites (solo-LTR+) and 157 solo-LTR absence sites (solo-LTR-) relative to the reference genome. Intersection analysis with gene/functional regions revealed that 248 solo-LTR- sites and 23 solo-LTR+ sites overlapped with genes or were in the vicinity of genes or functional regions, impacting a diverse range of gene structures. Moreover, through the utilization of 156 solo-LTR polymorphic sites for population genetic analysis, it was observed that these solo-LTR loci effectively clustered various breeds together, aligning with expectations and underscoring their practical utility. This study successfully established a methodology for detecting solo-LTR polymorphic sites. By applying these methods, a total of 603 high-reliability solo-LTR polymorphic sites were pinpointed, with nearly half of them being linked to genes or functional regions.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.