Haifa Maalmi, Phong B. H. Nguyen, Alexander Strom, Gidon J. Bönhof, Wolfgang Rathmann, Dan Ziegler, Michael P. Menden, Michael Roden, Christian Herder, GDS Group
{"title":"基于血清神经丝轻链、成纤维细胞生长因子-19 以及标准人体测量和临床变量的新发糖尿病多发性神经病预测模型","authors":"Haifa Maalmi, Phong B. H. Nguyen, Alexander Strom, Gidon J. Bönhof, Wolfgang Rathmann, Dan Ziegler, Michael P. Menden, Michael Roden, Christian Herder, GDS Group","doi":"10.1002/dmrr.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Diabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate protein biomarkers for reliably predicting present DSPN.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Using the proximity extension assay, we measured 135 neurological and protein biomarkers of inflammation in blood samples of 423 individuals with recent-onset diabetes from the German Diabetes Study (GDS). DSPN was diagnosed based on the Toronto Consensus Criteria. We constructed (i) a protein-based prediction model using LASSO logistic regression, (ii) an optimised traditional risk model with age, sex, waist circumference, height and diabetes type and (iii) a model combining both. All models were bootstrapped to assess the robustness, and optimism-corrected AUCs (95% CI) were reported.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>DSPN was present in 16% of the study population. LASSO logistic regression selected the neurofilament light chain (NFL) and fibroblast growth factor-19 (FGF-19) as the most predictive protein biomarkers for detecting DSPN in individuals with recent-onset diabetes. The protein-based model achieved an AUC of 0.66 (0.59, 0.73), while the traditional risk model had an AUC of 0.66 (0.61, 0.74). However, combined features boosted the model performance to an AUC of 0.72 (0.67, 0.79).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>We developed a prediction model for DSPN in recent-onset diabetes based on two protein biomarkers and five standard anthropometric, demographic and clinical variables. The model has a fair discrimination performance and might be used to inform the referral of patients for further testing.</p>\n </section>\n </div>","PeriodicalId":11335,"journal":{"name":"Diabetes/Metabolism Research and Reviews","volume":"40 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dmrr.70009","citationCount":"0","resultStr":"{\"title\":\"Prediction Model for Polyneuropathy in Recent-Onset Diabetes Based on Serum Neurofilament Light Chain, Fibroblast Growth Factor-19 and Standard Anthropometric and Clinical Variables\",\"authors\":\"Haifa Maalmi, Phong B. H. Nguyen, Alexander Strom, Gidon J. Bönhof, Wolfgang Rathmann, Dan Ziegler, Michael P. Menden, Michael Roden, Christian Herder, GDS Group\",\"doi\":\"10.1002/dmrr.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Diabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate protein biomarkers for reliably predicting present DSPN.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Using the proximity extension assay, we measured 135 neurological and protein biomarkers of inflammation in blood samples of 423 individuals with recent-onset diabetes from the German Diabetes Study (GDS). DSPN was diagnosed based on the Toronto Consensus Criteria. We constructed (i) a protein-based prediction model using LASSO logistic regression, (ii) an optimised traditional risk model with age, sex, waist circumference, height and diabetes type and (iii) a model combining both. All models were bootstrapped to assess the robustness, and optimism-corrected AUCs (95% CI) were reported.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>DSPN was present in 16% of the study population. LASSO logistic regression selected the neurofilament light chain (NFL) and fibroblast growth factor-19 (FGF-19) as the most predictive protein biomarkers for detecting DSPN in individuals with recent-onset diabetes. The protein-based model achieved an AUC of 0.66 (0.59, 0.73), while the traditional risk model had an AUC of 0.66 (0.61, 0.74). However, combined features boosted the model performance to an AUC of 0.72 (0.67, 0.79).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>We developed a prediction model for DSPN in recent-onset diabetes based on two protein biomarkers and five standard anthropometric, demographic and clinical variables. The model has a fair discrimination performance and might be used to inform the referral of patients for further testing.</p>\\n </section>\\n </div>\",\"PeriodicalId\":11335,\"journal\":{\"name\":\"Diabetes/Metabolism Research and Reviews\",\"volume\":\"40 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dmrr.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes/Metabolism Research and Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dmrr.70009\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes/Metabolism Research and Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dmrr.70009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Prediction Model for Polyneuropathy in Recent-Onset Diabetes Based on Serum Neurofilament Light Chain, Fibroblast Growth Factor-19 and Standard Anthropometric and Clinical Variables
Background
Diabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate protein biomarkers for reliably predicting present DSPN.
Methods
Using the proximity extension assay, we measured 135 neurological and protein biomarkers of inflammation in blood samples of 423 individuals with recent-onset diabetes from the German Diabetes Study (GDS). DSPN was diagnosed based on the Toronto Consensus Criteria. We constructed (i) a protein-based prediction model using LASSO logistic regression, (ii) an optimised traditional risk model with age, sex, waist circumference, height and diabetes type and (iii) a model combining both. All models were bootstrapped to assess the robustness, and optimism-corrected AUCs (95% CI) were reported.
Results
DSPN was present in 16% of the study population. LASSO logistic regression selected the neurofilament light chain (NFL) and fibroblast growth factor-19 (FGF-19) as the most predictive protein biomarkers for detecting DSPN in individuals with recent-onset diabetes. The protein-based model achieved an AUC of 0.66 (0.59, 0.73), while the traditional risk model had an AUC of 0.66 (0.61, 0.74). However, combined features boosted the model performance to an AUC of 0.72 (0.67, 0.79).
Conclusion
We developed a prediction model for DSPN in recent-onset diabetes based on two protein biomarkers and five standard anthropometric, demographic and clinical variables. The model has a fair discrimination performance and might be used to inform the referral of patients for further testing.
期刊介绍:
Diabetes/Metabolism Research and Reviews is a premier endocrinology and metabolism journal esteemed by clinicians and researchers alike. Encompassing a wide spectrum of topics including diabetes, endocrinology, metabolism, and obesity, the journal eagerly accepts submissions ranging from clinical studies to basic and translational research, as well as reviews exploring historical progress, controversial issues, and prominent opinions in the field. Join us in advancing knowledge and understanding in the realm of diabetes and metabolism.