Lanxiang Wang, Yue Liu, Haoran Ni, Wenlong Zuo, Haimei Shi, Weixin Liao, Hongbin Liu, Jiajia Chen, Yang Bai, Hong Yue, Ancheng Huang, Jonathan Friedman, Tong Si, Yinggao Liu, Moxian Chen, Lei Dai
{"title":"能降解吲哚-3-乙酸的植物相关细菌的系统特征。","authors":"Lanxiang Wang, Yue Liu, Haoran Ni, Wenlong Zuo, Haimei Shi, Weixin Liao, Hongbin Liu, Jiajia Chen, Yang Bai, Hong Yue, Ancheng Huang, Jonathan Friedman, Tong Si, Yinggao Liu, Moxian Chen, Lei Dai","doi":"10.1371/journal.pbio.3002921","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-associated microbiota affect pant growth and development by regulating plant hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can be produced by various plant-associated bacteria. However, the prevalence of bacteria with the capacity to degrade IAA in the rhizosphere has not been systematically studied. In this study, we analyzed the IAA degradation capabilities of bacterial isolates from the roots of Arabidopsis and rice. Using genomics analysis and in vitro assays, we found that 21 out of 183 taxonomically diverse bacterial isolates possess the ability to degrade IAA. Through comparative genomics and transcriptomic assays, we identified iac-like or iad-like operon in the genomes of these IAA degraders. Additionally, the putative regulator of the operon was found to be highly conserved among these strains through protein structure similarity analysis. Some of the IAA degraders could utilize IAA as their carbon and energy source. In planta, most of the IAA degrading strains mitigated Arabidopsis and rice seedling root growth inhibition (RGI) triggered by exogenous IAA. Moreover, RGI caused by complex synthetic bacterial community can be alleviated by introducing IAA degraders. Importantly, we observed increased colonization preference of IAA degraders from soil to root according to the frequency of the biomarker genes in metagenome-assembled genomes (MAGs) collected from different habitats, suggesting that there is a close association between IAA degraders and IAA producers. In summary, our findings further the understanding of the functional diversity and potential biological roles of plant-associated bacteria in host plant root morphogenesis.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002921"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630574/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systematic characterization of plant-associated bacteria that can degrade indole-3-acetic acid.\",\"authors\":\"Lanxiang Wang, Yue Liu, Haoran Ni, Wenlong Zuo, Haimei Shi, Weixin Liao, Hongbin Liu, Jiajia Chen, Yang Bai, Hong Yue, Ancheng Huang, Jonathan Friedman, Tong Si, Yinggao Liu, Moxian Chen, Lei Dai\",\"doi\":\"10.1371/journal.pbio.3002921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-associated microbiota affect pant growth and development by regulating plant hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can be produced by various plant-associated bacteria. However, the prevalence of bacteria with the capacity to degrade IAA in the rhizosphere has not been systematically studied. In this study, we analyzed the IAA degradation capabilities of bacterial isolates from the roots of Arabidopsis and rice. Using genomics analysis and in vitro assays, we found that 21 out of 183 taxonomically diverse bacterial isolates possess the ability to degrade IAA. Through comparative genomics and transcriptomic assays, we identified iac-like or iad-like operon in the genomes of these IAA degraders. Additionally, the putative regulator of the operon was found to be highly conserved among these strains through protein structure similarity analysis. Some of the IAA degraders could utilize IAA as their carbon and energy source. In planta, most of the IAA degrading strains mitigated Arabidopsis and rice seedling root growth inhibition (RGI) triggered by exogenous IAA. Moreover, RGI caused by complex synthetic bacterial community can be alleviated by introducing IAA degraders. Importantly, we observed increased colonization preference of IAA degraders from soil to root according to the frequency of the biomarker genes in metagenome-assembled genomes (MAGs) collected from different habitats, suggesting that there is a close association between IAA degraders and IAA producers. In summary, our findings further the understanding of the functional diversity and potential biological roles of plant-associated bacteria in host plant root morphogenesis.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002921\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002921\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002921","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Systematic characterization of plant-associated bacteria that can degrade indole-3-acetic acid.
Plant-associated microbiota affect pant growth and development by regulating plant hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can be produced by various plant-associated bacteria. However, the prevalence of bacteria with the capacity to degrade IAA in the rhizosphere has not been systematically studied. In this study, we analyzed the IAA degradation capabilities of bacterial isolates from the roots of Arabidopsis and rice. Using genomics analysis and in vitro assays, we found that 21 out of 183 taxonomically diverse bacterial isolates possess the ability to degrade IAA. Through comparative genomics and transcriptomic assays, we identified iac-like or iad-like operon in the genomes of these IAA degraders. Additionally, the putative regulator of the operon was found to be highly conserved among these strains through protein structure similarity analysis. Some of the IAA degraders could utilize IAA as their carbon and energy source. In planta, most of the IAA degrading strains mitigated Arabidopsis and rice seedling root growth inhibition (RGI) triggered by exogenous IAA. Moreover, RGI caused by complex synthetic bacterial community can be alleviated by introducing IAA degraders. Importantly, we observed increased colonization preference of IAA degraders from soil to root according to the frequency of the biomarker genes in metagenome-assembled genomes (MAGs) collected from different habitats, suggesting that there is a close association between IAA degraders and IAA producers. In summary, our findings further the understanding of the functional diversity and potential biological roles of plant-associated bacteria in host plant root morphogenesis.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.