{"title":"因果推断方法。第 3 部分:测量误差和外部有效性威胁。","authors":"Joseph A Bulbulia","doi":"10.1017/ehs.2024.33","DOIUrl":null,"url":null,"abstract":"<p><p>The human sciences should seek generalisations wherever possible. For ethical and scientific reasons, it is desirable to sample more broadly than 'Western, educated, industrialised, rich, and democratic' (WEIRD) societies. However, restricting the target population is sometimes necessary; for example, young children should not be recruited for studies on elderly care. Under which conditions is unrestricted sampling desirable or undesirable? Here, we use causal diagrams to clarify the structural features of measurement error bias and target population restriction bias (or 'selection restriction'), focusing on threats to valid causal inference that arise in comparative cultural research. We define any study exhibiting such biases, or confounding biases, as weird (wrongly estimated inferences owing to inappropriate restriction and distortion). We explain why statistical tests such as configural, metric and scalar invariance cannot address the structural biases of weird studies. Overall, we examine how the workflows for causal inference provide the necessary preflight checklists for ambitious, effective and safe comparative cultural research.</p>","PeriodicalId":36414,"journal":{"name":"Evolutionary Human Sciences","volume":"6 ","pages":"e42"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methods in causal inference. Part 3: measurement error and external validity threats.\",\"authors\":\"Joseph A Bulbulia\",\"doi\":\"10.1017/ehs.2024.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human sciences should seek generalisations wherever possible. For ethical and scientific reasons, it is desirable to sample more broadly than 'Western, educated, industrialised, rich, and democratic' (WEIRD) societies. However, restricting the target population is sometimes necessary; for example, young children should not be recruited for studies on elderly care. Under which conditions is unrestricted sampling desirable or undesirable? Here, we use causal diagrams to clarify the structural features of measurement error bias and target population restriction bias (or 'selection restriction'), focusing on threats to valid causal inference that arise in comparative cultural research. We define any study exhibiting such biases, or confounding biases, as weird (wrongly estimated inferences owing to inappropriate restriction and distortion). We explain why statistical tests such as configural, metric and scalar invariance cannot address the structural biases of weird studies. Overall, we examine how the workflows for causal inference provide the necessary preflight checklists for ambitious, effective and safe comparative cultural research.</p>\",\"PeriodicalId\":36414,\"journal\":{\"name\":\"Evolutionary Human Sciences\",\"volume\":\"6 \",\"pages\":\"e42\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Human Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/ehs.2024.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Human Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ehs.2024.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Methods in causal inference. Part 3: measurement error and external validity threats.
The human sciences should seek generalisations wherever possible. For ethical and scientific reasons, it is desirable to sample more broadly than 'Western, educated, industrialised, rich, and democratic' (WEIRD) societies. However, restricting the target population is sometimes necessary; for example, young children should not be recruited for studies on elderly care. Under which conditions is unrestricted sampling desirable or undesirable? Here, we use causal diagrams to clarify the structural features of measurement error bias and target population restriction bias (or 'selection restriction'), focusing on threats to valid causal inference that arise in comparative cultural research. We define any study exhibiting such biases, or confounding biases, as weird (wrongly estimated inferences owing to inappropriate restriction and distortion). We explain why statistical tests such as configural, metric and scalar invariance cannot address the structural biases of weird studies. Overall, we examine how the workflows for causal inference provide the necessary preflight checklists for ambitious, effective and safe comparative cultural research.