Muhammad Tariq Zeb, Elise Dumont, Muhammad Tahir Khan, Aroosa Shehzadi, Irshad Ahmad
{"title":"针对新城疫病毒的多表位肽疫苗:分子动力学模拟和实验验证。","authors":"Muhammad Tariq Zeb, Elise Dumont, Muhammad Tahir Khan, Aroosa Shehzadi, Irshad Ahmad","doi":"10.3390/vaccines12111250","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Newcastle disease virus (NDV) is a highly contagious and economically devastating pathogen affecting poultry worldwide, leading to significant losses in the poultry industry. Despite existing vaccines, outbreaks continue to occur, highlighting the need for more effective vaccination strategies. Developing a multi-epitopic peptide vaccine offers a promising approach to enhance protection against NDV.</p><p><strong>Objectives: </strong>Here, we aimed to design and evaluate a multi-epitopic vaccine against NDV using molecular dynamics (MD) simulation.</p><p><strong>Methodology: </strong>We retrieved NDV sequences for the fusion (F) protein and hemagglutinin-neuraminidase (HN) protein. Subsequently, B-cell and T-cell epitopes were predicted. The top potential epitopes were utilized to design the vaccine construct, which was subsequently docked against chicken TLR4 and MHC1 receptors to assess the immunological response. The resulting docked complex underwent a 1 microsecond (1000 ns) MD simulation. For experimental evaluation, the vaccine's efficacy was assessed in mice and chickens using a controlled study design, where animals were randomly divided into groups receiving either a local ND vaccine or the peptide vaccine or a control treatment.</p><p><strong>Results: </strong>The 40 amino acid peptide vaccine demonstrated strong binding affinity and stability within the TLR4 and MHC1 receptor-peptide complexes. The root mean square deviation of peptide vaccine and TLR4 receptor showed rapid stabilization after an initial repositioning. The root mean square fluctuation revealed relatively low fluctuations (below 3 Å) for the TLR4 receptor, while the peptide exhibited higher fluctuations. The overall binding energy of the peptide vaccine with TLR4 and MHC1 receptors amounted to -15.7 kcal·mol<sup>-1</sup> and -36.8 kcal·mol<sup>-1</sup>, respectively. For experimental evaluations in mice and chicken, the peptide vaccine was synthesized using services of GeneScript Biotech<sup>®</sup> (Singapore) PTE Limited. Experimental evaluations showed a significant immune response in both mice and chickens, with the vaccine eliciting robust antibody production, as evidenced by increasing HI titers over time. Statistical analysis was performed using an independent <i>t</i>-test with Type-II error to compare the groups, calculating the <i>p</i>-values to determine the significance of the immune response between different groups.</p><p><strong>Conclusions: </strong>Multi-epitopic peptide vaccine has demonstrated a good immunological response in natural hosts.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"12 11","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Epitopic Peptide Vaccine Against Newcastle Disease Virus: Molecular Dynamics Simulation and Experimental Validation.\",\"authors\":\"Muhammad Tariq Zeb, Elise Dumont, Muhammad Tahir Khan, Aroosa Shehzadi, Irshad Ahmad\",\"doi\":\"10.3390/vaccines12111250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Newcastle disease virus (NDV) is a highly contagious and economically devastating pathogen affecting poultry worldwide, leading to significant losses in the poultry industry. Despite existing vaccines, outbreaks continue to occur, highlighting the need for more effective vaccination strategies. Developing a multi-epitopic peptide vaccine offers a promising approach to enhance protection against NDV.</p><p><strong>Objectives: </strong>Here, we aimed to design and evaluate a multi-epitopic vaccine against NDV using molecular dynamics (MD) simulation.</p><p><strong>Methodology: </strong>We retrieved NDV sequences for the fusion (F) protein and hemagglutinin-neuraminidase (HN) protein. Subsequently, B-cell and T-cell epitopes were predicted. The top potential epitopes were utilized to design the vaccine construct, which was subsequently docked against chicken TLR4 and MHC1 receptors to assess the immunological response. The resulting docked complex underwent a 1 microsecond (1000 ns) MD simulation. For experimental evaluation, the vaccine's efficacy was assessed in mice and chickens using a controlled study design, where animals were randomly divided into groups receiving either a local ND vaccine or the peptide vaccine or a control treatment.</p><p><strong>Results: </strong>The 40 amino acid peptide vaccine demonstrated strong binding affinity and stability within the TLR4 and MHC1 receptor-peptide complexes. The root mean square deviation of peptide vaccine and TLR4 receptor showed rapid stabilization after an initial repositioning. The root mean square fluctuation revealed relatively low fluctuations (below 3 Å) for the TLR4 receptor, while the peptide exhibited higher fluctuations. The overall binding energy of the peptide vaccine with TLR4 and MHC1 receptors amounted to -15.7 kcal·mol<sup>-1</sup> and -36.8 kcal·mol<sup>-1</sup>, respectively. For experimental evaluations in mice and chicken, the peptide vaccine was synthesized using services of GeneScript Biotech<sup>®</sup> (Singapore) PTE Limited. Experimental evaluations showed a significant immune response in both mice and chickens, with the vaccine eliciting robust antibody production, as evidenced by increasing HI titers over time. Statistical analysis was performed using an independent <i>t</i>-test with Type-II error to compare the groups, calculating the <i>p</i>-values to determine the significance of the immune response between different groups.</p><p><strong>Conclusions: </strong>Multi-epitopic peptide vaccine has demonstrated a good immunological response in natural hosts.</p>\",\"PeriodicalId\":23634,\"journal\":{\"name\":\"Vaccines\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/vaccines12111250\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines12111250","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Multi-Epitopic Peptide Vaccine Against Newcastle Disease Virus: Molecular Dynamics Simulation and Experimental Validation.
Background: Newcastle disease virus (NDV) is a highly contagious and economically devastating pathogen affecting poultry worldwide, leading to significant losses in the poultry industry. Despite existing vaccines, outbreaks continue to occur, highlighting the need for more effective vaccination strategies. Developing a multi-epitopic peptide vaccine offers a promising approach to enhance protection against NDV.
Objectives: Here, we aimed to design and evaluate a multi-epitopic vaccine against NDV using molecular dynamics (MD) simulation.
Methodology: We retrieved NDV sequences for the fusion (F) protein and hemagglutinin-neuraminidase (HN) protein. Subsequently, B-cell and T-cell epitopes were predicted. The top potential epitopes were utilized to design the vaccine construct, which was subsequently docked against chicken TLR4 and MHC1 receptors to assess the immunological response. The resulting docked complex underwent a 1 microsecond (1000 ns) MD simulation. For experimental evaluation, the vaccine's efficacy was assessed in mice and chickens using a controlled study design, where animals were randomly divided into groups receiving either a local ND vaccine or the peptide vaccine or a control treatment.
Results: The 40 amino acid peptide vaccine demonstrated strong binding affinity and stability within the TLR4 and MHC1 receptor-peptide complexes. The root mean square deviation of peptide vaccine and TLR4 receptor showed rapid stabilization after an initial repositioning. The root mean square fluctuation revealed relatively low fluctuations (below 3 Å) for the TLR4 receptor, while the peptide exhibited higher fluctuations. The overall binding energy of the peptide vaccine with TLR4 and MHC1 receptors amounted to -15.7 kcal·mol-1 and -36.8 kcal·mol-1, respectively. For experimental evaluations in mice and chicken, the peptide vaccine was synthesized using services of GeneScript Biotech® (Singapore) PTE Limited. Experimental evaluations showed a significant immune response in both mice and chickens, with the vaccine eliciting robust antibody production, as evidenced by increasing HI titers over time. Statistical analysis was performed using an independent t-test with Type-II error to compare the groups, calculating the p-values to determine the significance of the immune response between different groups.
Conclusions: Multi-epitopic peptide vaccine has demonstrated a good immunological response in natural hosts.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.