Muttiah Barathan, Sook Luan Ng, Yogeswaran Lokanathan, Min Hwei Ng, Jia Xian Law
{"title":"牛奶衍生的细胞外囊泡:比较治疗和靶向纳米载体应用的新视角。","authors":"Muttiah Barathan, Sook Luan Ng, Yogeswaran Lokanathan, Min Hwei Ng, Jia Xian Law","doi":"10.3390/vaccines12111282","DOIUrl":null,"url":null,"abstract":"<p><p>Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"12 11","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application.\",\"authors\":\"Muttiah Barathan, Sook Luan Ng, Yogeswaran Lokanathan, Min Hwei Ng, Jia Xian Law\",\"doi\":\"10.3390/vaccines12111282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.</p>\",\"PeriodicalId\":23634,\"journal\":{\"name\":\"Vaccines\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/vaccines12111282\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines12111282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application.
Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.