Tong Wu, Yang Lan, Ge Li, Kai Wang, Yu You, Jiaqi Zhu, Lihua Ren, Shaowei Wu
{"title":"长期暴露于环境空气污染与空腹血糖之间的关系:系统回顾与元分析》。","authors":"Tong Wu, Yang Lan, Ge Li, Kai Wang, Yu You, Jiaqi Zhu, Lihua Ren, Shaowei Wu","doi":"10.3390/toxics12110792","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing studies are indicating a potential association between ambient air pollution exposure and fasting blood glucose (FBG), an indicator of prediabetes and diabetes. However, there is inconsistency within the existing literature. The aim of this study was to summarize the associations of exposures to particulate matters (PMs) (with aerodynamic diameters of ≤1 μm (PM<sub>1</sub>), ≤2.5 μm (PM<sub>2.5</sub>), and ≤10 μm (PM<sub>10</sub>), respectively) and gaseous pollutants (sulfur dioxide (SO<sub>2</sub>), nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>)) with FBG based on the existing epidemiological research for a better understanding of the relationship between air pollution and diabetes. Up to 2 July 2024, we performed a comprehensive literature retrieval from various electronic databases (PubMed, Web of Science, Scopus, and Embase). Random-effect and fixed-effect models were utilized to estimate the pooled percent changes (%) and 95% confidence intervals (CIs). Then, subgroup meta-analyses and meta-regression analyses were applied to recognize the sources of heterogeneity. There were 33 studies eligible for the meta-analysis. The results showed that for each 10 μg/m<sup>3</sup> increase in long-term exposures to PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>, and SO<sub>2</sub>, the pooled percent changes in FBG were 2.24% (95% CI: 0.54%, 3.96%), 1.72% (95% CI: 0.93%, 2.25%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52% (95% CI:0.40%, 0.63%), respectively. Long-term exposures to ambient NO<sub>2</sub> and O<sub>3</sub> were not related to alterations in FBG. In conclusion, our findings support that long-term exposures to PMs of various aerodynamic diameters and SO<sub>2</sub> are associated with significantly elevated FBG levels.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598464/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association Between Long-Term Exposure to Ambient Air Pollution and Fasting Blood Glucose: A Systematic Review and Meta-Analysis.\",\"authors\":\"Tong Wu, Yang Lan, Ge Li, Kai Wang, Yu You, Jiaqi Zhu, Lihua Ren, Shaowei Wu\",\"doi\":\"10.3390/toxics12110792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing studies are indicating a potential association between ambient air pollution exposure and fasting blood glucose (FBG), an indicator of prediabetes and diabetes. However, there is inconsistency within the existing literature. The aim of this study was to summarize the associations of exposures to particulate matters (PMs) (with aerodynamic diameters of ≤1 μm (PM<sub>1</sub>), ≤2.5 μm (PM<sub>2.5</sub>), and ≤10 μm (PM<sub>10</sub>), respectively) and gaseous pollutants (sulfur dioxide (SO<sub>2</sub>), nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>)) with FBG based on the existing epidemiological research for a better understanding of the relationship between air pollution and diabetes. Up to 2 July 2024, we performed a comprehensive literature retrieval from various electronic databases (PubMed, Web of Science, Scopus, and Embase). Random-effect and fixed-effect models were utilized to estimate the pooled percent changes (%) and 95% confidence intervals (CIs). Then, subgroup meta-analyses and meta-regression analyses were applied to recognize the sources of heterogeneity. There were 33 studies eligible for the meta-analysis. The results showed that for each 10 μg/m<sup>3</sup> increase in long-term exposures to PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>, and SO<sub>2</sub>, the pooled percent changes in FBG were 2.24% (95% CI: 0.54%, 3.96%), 1.72% (95% CI: 0.93%, 2.25%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52% (95% CI:0.40%, 0.63%), respectively. Long-term exposures to ambient NO<sub>2</sub> and O<sub>3</sub> were not related to alterations in FBG. In conclusion, our findings support that long-term exposures to PMs of various aerodynamic diameters and SO<sub>2</sub> are associated with significantly elevated FBG levels.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598464/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12110792\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12110792","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Association Between Long-Term Exposure to Ambient Air Pollution and Fasting Blood Glucose: A Systematic Review and Meta-Analysis.
Increasing studies are indicating a potential association between ambient air pollution exposure and fasting blood glucose (FBG), an indicator of prediabetes and diabetes. However, there is inconsistency within the existing literature. The aim of this study was to summarize the associations of exposures to particulate matters (PMs) (with aerodynamic diameters of ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10), respectively) and gaseous pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3)) with FBG based on the existing epidemiological research for a better understanding of the relationship between air pollution and diabetes. Up to 2 July 2024, we performed a comprehensive literature retrieval from various electronic databases (PubMed, Web of Science, Scopus, and Embase). Random-effect and fixed-effect models were utilized to estimate the pooled percent changes (%) and 95% confidence intervals (CIs). Then, subgroup meta-analyses and meta-regression analyses were applied to recognize the sources of heterogeneity. There were 33 studies eligible for the meta-analysis. The results showed that for each 10 μg/m3 increase in long-term exposures to PM1, PM2.5, PM10, and SO2, the pooled percent changes in FBG were 2.24% (95% CI: 0.54%, 3.96%), 1.72% (95% CI: 0.93%, 2.25%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52% (95% CI:0.40%, 0.63%), respectively. Long-term exposures to ambient NO2 and O3 were not related to alterations in FBG. In conclusion, our findings support that long-term exposures to PMs of various aerodynamic diameters and SO2 are associated with significantly elevated FBG levels.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.