Nan Wang, Li-Lan Cen, Zhe Tian, Miao-Miao An, Qian Gu, Xin-Hong Zhou, Yi-He Zhang, Lucas Liu, Jun Zhang, Di Yang, Yong-Zhi Huang, Xi-Dai Long, Qian Yang
{"title":"eEF2K 是一种与癌症生存和预后相关的重要激酶。","authors":"Nan Wang, Li-Lan Cen, Zhe Tian, Miao-Miao An, Qian Gu, Xin-Hong Zhou, Yi-He Zhang, Lucas Liu, Jun Zhang, Di Yang, Yong-Zhi Huang, Xi-Dai Long, Qian Yang","doi":"10.1038/s41598-024-78652-4","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic Elongation Factor 2 Kinase (eEF2K), a member of the α-kinase family, services as a crucial negative regulator of protein synthesis, particularly under conditions of cellular stress. A pan-cancer analysis of eEF2K expression, genetic variants, and clinical relevance across multiple tumor types was performed using data from the Cancer Genome Atlas (TCGA) and GEO. Our findings suggest that eEF2K has dual roles in cancer progression, with its expression correlating with patient prognosis. Significant phosphorylation of eEF2 at T57, Y434, and T59 was observed, which may regulate protein synthesis during stress. The elevated T59 phosphorylation in COAD, despite the low eEF2K expression, indicates that this may be regulated by alternative kinases, such as AMPK or mTOR. This suggests that compensatory mechanisms may be involved. In addition to modulating eEF2 phosphorylation, eEF2K is involved in a number of other processes, including peptidyl-serine phosphorylation, the G2/M transition, and the MAPK cascade. The protein products of eEF2K are capable of localizing to the nucleus, cytoplasm, and cytosol, where they bind to a range of proteins, including ATP and calcium ions. These findings provide novel insights into the role of eEF2K in cancer biology and suggest that the targeting of eEF2K and eEF2 phosphorylation may offer promising therapeutic strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"29284"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599947/pdf/","citationCount":"0","resultStr":"{\"title\":\"eEF2K as an important kinase associated with cancer survival and prognosis.\",\"authors\":\"Nan Wang, Li-Lan Cen, Zhe Tian, Miao-Miao An, Qian Gu, Xin-Hong Zhou, Yi-He Zhang, Lucas Liu, Jun Zhang, Di Yang, Yong-Zhi Huang, Xi-Dai Long, Qian Yang\",\"doi\":\"10.1038/s41598-024-78652-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic Elongation Factor 2 Kinase (eEF2K), a member of the α-kinase family, services as a crucial negative regulator of protein synthesis, particularly under conditions of cellular stress. A pan-cancer analysis of eEF2K expression, genetic variants, and clinical relevance across multiple tumor types was performed using data from the Cancer Genome Atlas (TCGA) and GEO. Our findings suggest that eEF2K has dual roles in cancer progression, with its expression correlating with patient prognosis. Significant phosphorylation of eEF2 at T57, Y434, and T59 was observed, which may regulate protein synthesis during stress. The elevated T59 phosphorylation in COAD, despite the low eEF2K expression, indicates that this may be regulated by alternative kinases, such as AMPK or mTOR. This suggests that compensatory mechanisms may be involved. In addition to modulating eEF2 phosphorylation, eEF2K is involved in a number of other processes, including peptidyl-serine phosphorylation, the G2/M transition, and the MAPK cascade. The protein products of eEF2K are capable of localizing to the nucleus, cytoplasm, and cytosol, where they bind to a range of proteins, including ATP and calcium ions. These findings provide novel insights into the role of eEF2K in cancer biology and suggest that the targeting of eEF2K and eEF2 phosphorylation may offer promising therapeutic strategies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"29284\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-78652-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78652-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
eEF2K as an important kinase associated with cancer survival and prognosis.
Eukaryotic Elongation Factor 2 Kinase (eEF2K), a member of the α-kinase family, services as a crucial negative regulator of protein synthesis, particularly under conditions of cellular stress. A pan-cancer analysis of eEF2K expression, genetic variants, and clinical relevance across multiple tumor types was performed using data from the Cancer Genome Atlas (TCGA) and GEO. Our findings suggest that eEF2K has dual roles in cancer progression, with its expression correlating with patient prognosis. Significant phosphorylation of eEF2 at T57, Y434, and T59 was observed, which may regulate protein synthesis during stress. The elevated T59 phosphorylation in COAD, despite the low eEF2K expression, indicates that this may be regulated by alternative kinases, such as AMPK or mTOR. This suggests that compensatory mechanisms may be involved. In addition to modulating eEF2 phosphorylation, eEF2K is involved in a number of other processes, including peptidyl-serine phosphorylation, the G2/M transition, and the MAPK cascade. The protein products of eEF2K are capable of localizing to the nucleus, cytoplasm, and cytosol, where they bind to a range of proteins, including ATP and calcium ions. These findings provide novel insights into the role of eEF2K in cancer biology and suggest that the targeting of eEF2K and eEF2 phosphorylation may offer promising therapeutic strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.