Alena Kozlova, Ildus Pateev, Galina Shepelkova, Olga Vasileva, Natalia Zakharova, Vladimir Yeremeev, Roman Ivanov, Vasiliy Reshetnikov
{"title":"编码多表位抗原 ESAT6 的帽优化 mRNA 可诱导针对结核分枝杆菌的强大细胞和体液免疫反应。","authors":"Alena Kozlova, Ildus Pateev, Galina Shepelkova, Olga Vasileva, Natalia Zakharova, Vladimir Yeremeev, Roman Ivanov, Vasiliy Reshetnikov","doi":"10.3390/vaccines12111267","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives.</b> Tuberculosis is a deadly bacterial disease and the second most common cause of death from monoinfectious diseases worldwide. Comprehensive measures taken by health authorities in various countries in recent decades have saved tens of millions of lives, but the number of new cases of this infection has been steadily increasing in the last few years and already exceeds 10 million new cases annually. The development of new vaccines against tuberculosis is a priority area in the prevention of new cases of the disease. mRNA vaccines have already shown high efficacy against COVID-19 and other viral infections and can currently be considered a promising field of antituberculosis vaccination. In our previous study, we assessed the immunogenicity and protective activity of several types of antituberculosis mRNA vaccines with different 5' untranslated regions, but the efficacy of these vaccines was either comparable with or lower than that of BCG. <b>Methods.</b> Here, we conducted a comprehensive experiment to investigate the effects of cotranscriptional capping conditions and of cap structure on the magnitude of the mRNAs' translation in HEK293T and DC2.4 cells. The most effective cap version was used to create an antituberculosis mRNA vaccine called mEpitope-ESAT6. <b>Results and Conclusions</b>. We compared immunogenicity and protective activity between mEpitope-ESAT6 and BCG and found that the vaccine with the new cap type is more immunogenic than BCG. Nonetheless, the increased immunogenicity did not enhance vaccine-induced protection. Thus, the incorporation of different cap analogs into mRNA allows to modulate the efficacy of mRNA vaccines.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"12 11","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599153/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Cap-Optimized mRNA Encoding Multiepitope Antigen ESAT6 Induces Robust Cellular and Humoral Immune Responses Against <i>Mycobacterium tuberculosis</i>.\",\"authors\":\"Alena Kozlova, Ildus Pateev, Galina Shepelkova, Olga Vasileva, Natalia Zakharova, Vladimir Yeremeev, Roman Ivanov, Vasiliy Reshetnikov\",\"doi\":\"10.3390/vaccines12111267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives.</b> Tuberculosis is a deadly bacterial disease and the second most common cause of death from monoinfectious diseases worldwide. Comprehensive measures taken by health authorities in various countries in recent decades have saved tens of millions of lives, but the number of new cases of this infection has been steadily increasing in the last few years and already exceeds 10 million new cases annually. The development of new vaccines against tuberculosis is a priority area in the prevention of new cases of the disease. mRNA vaccines have already shown high efficacy against COVID-19 and other viral infections and can currently be considered a promising field of antituberculosis vaccination. In our previous study, we assessed the immunogenicity and protective activity of several types of antituberculosis mRNA vaccines with different 5' untranslated regions, but the efficacy of these vaccines was either comparable with or lower than that of BCG. <b>Methods.</b> Here, we conducted a comprehensive experiment to investigate the effects of cotranscriptional capping conditions and of cap structure on the magnitude of the mRNAs' translation in HEK293T and DC2.4 cells. The most effective cap version was used to create an antituberculosis mRNA vaccine called mEpitope-ESAT6. <b>Results and Conclusions</b>. We compared immunogenicity and protective activity between mEpitope-ESAT6 and BCG and found that the vaccine with the new cap type is more immunogenic than BCG. Nonetheless, the increased immunogenicity did not enhance vaccine-induced protection. Thus, the incorporation of different cap analogs into mRNA allows to modulate the efficacy of mRNA vaccines.</p>\",\"PeriodicalId\":23634,\"journal\":{\"name\":\"Vaccines\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599153/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/vaccines12111267\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines12111267","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A Cap-Optimized mRNA Encoding Multiepitope Antigen ESAT6 Induces Robust Cellular and Humoral Immune Responses Against Mycobacterium tuberculosis.
Background/Objectives. Tuberculosis is a deadly bacterial disease and the second most common cause of death from monoinfectious diseases worldwide. Comprehensive measures taken by health authorities in various countries in recent decades have saved tens of millions of lives, but the number of new cases of this infection has been steadily increasing in the last few years and already exceeds 10 million new cases annually. The development of new vaccines against tuberculosis is a priority area in the prevention of new cases of the disease. mRNA vaccines have already shown high efficacy against COVID-19 and other viral infections and can currently be considered a promising field of antituberculosis vaccination. In our previous study, we assessed the immunogenicity and protective activity of several types of antituberculosis mRNA vaccines with different 5' untranslated regions, but the efficacy of these vaccines was either comparable with or lower than that of BCG. Methods. Here, we conducted a comprehensive experiment to investigate the effects of cotranscriptional capping conditions and of cap structure on the magnitude of the mRNAs' translation in HEK293T and DC2.4 cells. The most effective cap version was used to create an antituberculosis mRNA vaccine called mEpitope-ESAT6. Results and Conclusions. We compared immunogenicity and protective activity between mEpitope-ESAT6 and BCG and found that the vaccine with the new cap type is more immunogenic than BCG. Nonetheless, the increased immunogenicity did not enhance vaccine-induced protection. Thus, the incorporation of different cap analogs into mRNA allows to modulate the efficacy of mRNA vaccines.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.