Meladi L Motloutsi, Funeka Matebese, Mxolisi M Motsa, Muthumuni Managa, Richard M Moutloali
{"title":"减轻屠宰场废水处理中的膜污垢:将预处理步骤与齐聚物改性石墨烯氧化物-聚醚砜复合膜相结合。","authors":"Meladi L Motloutsi, Funeka Matebese, Mxolisi M Motsa, Muthumuni Managa, Richard M Moutloali","doi":"10.3390/membranes14110227","DOIUrl":null,"url":null,"abstract":"<p><p>Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.m<sup>-2</sup>h<sup>-1</sup>. The modified membranes presented improved antifouling properties, with the flux recovery ratio (<i>FRR</i>) increasing from 59.5 to 93.3%. This study compared the effectiveness of the two pretreatment processes, AC, coagulation, and the integrated system (coagulation/AC-UF membrane), in the removal of natural organic matter (NOM) and improvement of abattoir wastewater's pH, electrical conductivity, TDS, and turbidity. The integrated systems produced improved water quality in terms of pH, EC, TDS, turbidity, and organic content. The fluorescence excitation-emission matrix (FEEM) analysis exhibited almost no fluorescence peak post-treatment following organic loading removal. The quality of the water met the South African non-potable water reuse standards. The sole membrane treatment systems exhibited good fouling resistance without the pretreatment systems; however, integrating these systems can offer extended longer filtration periods, thereby assisting in cost aspects of the abattoir wastewater treatment system.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596602/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide-Polyethersulfone Composite Membranes.\",\"authors\":\"Meladi L Motloutsi, Funeka Matebese, Mxolisi M Motsa, Muthumuni Managa, Richard M Moutloali\",\"doi\":\"10.3390/membranes14110227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.m<sup>-2</sup>h<sup>-1</sup>. The modified membranes presented improved antifouling properties, with the flux recovery ratio (<i>FRR</i>) increasing from 59.5 to 93.3%. This study compared the effectiveness of the two pretreatment processes, AC, coagulation, and the integrated system (coagulation/AC-UF membrane), in the removal of natural organic matter (NOM) and improvement of abattoir wastewater's pH, electrical conductivity, TDS, and turbidity. The integrated systems produced improved water quality in terms of pH, EC, TDS, turbidity, and organic content. The fluorescence excitation-emission matrix (FEEM) analysis exhibited almost no fluorescence peak post-treatment following organic loading removal. The quality of the water met the South African non-potable water reuse standards. The sole membrane treatment systems exhibited good fouling resistance without the pretreatment systems; however, integrating these systems can offer extended longer filtration periods, thereby assisting in cost aspects of the abattoir wastewater treatment system.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596602/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14110227\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14110227","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide-Polyethersulfone Composite Membranes.
Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.m-2h-1. The modified membranes presented improved antifouling properties, with the flux recovery ratio (FRR) increasing from 59.5 to 93.3%. This study compared the effectiveness of the two pretreatment processes, AC, coagulation, and the integrated system (coagulation/AC-UF membrane), in the removal of natural organic matter (NOM) and improvement of abattoir wastewater's pH, electrical conductivity, TDS, and turbidity. The integrated systems produced improved water quality in terms of pH, EC, TDS, turbidity, and organic content. The fluorescence excitation-emission matrix (FEEM) analysis exhibited almost no fluorescence peak post-treatment following organic loading removal. The quality of the water met the South African non-potable water reuse standards. The sole membrane treatment systems exhibited good fouling resistance without the pretreatment systems; however, integrating these systems can offer extended longer filtration periods, thereby assisting in cost aspects of the abattoir wastewater treatment system.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.