{"title":"聚醚砜透析膜中的胺官能化计算分析","authors":"Simin Nazari, Arash Mollahosseini, Amira Abdelrasoul","doi":"10.3390/membranes14110226","DOIUrl":null,"url":null,"abstract":"<p><p>Hemodialysis is a critical treatment for patients with end-stage renal disease (ESRD) who lack kidney transplant options. The compatibility of hemodialysis membranes is vital, as incompatibility can trigger inflammation, coagulation, and immune responses, potentially increasing morbidity and mortality among patients with ESRD. This study employed molecular dynamics simulation (MDS) and molecular docking to assess the hemocompatible properties of Polyether Sulfone (PES) membranes modified via two distinct amine functionalization techniques. The molecular docking results demonstrated that side amine functionalization exhibited a lower affinity energy (-7.6) for fibrinogen compared to the middle amine functionalization (-8.2), suggesting enhanced antifouling properties and superior hemocompatibility. Additionally, side amine functionalization formed hydrogen bonds with four amino acids, enhancing its resistance to protein adhesion compared to three amino acids in the middle amine structure. Furthermore, the molecular dynamics simulations revealed differences in water mobility, with the side amine functionalized membranes showing a lower mobility value (9.74 × 10<sup>-7</sup>) than those treated with the middle amine method (9.85 × 10<sup>-7</sup>), indicating higher water stability and potentially better patient outcomes. This study's findings contribute to the design of more efficient and safer hemodialysis treatments by optimizing membrane materials.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596656/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational Analysis of Amine Functionalization in Zwitterionized Polyether Sulfone Dialysis Membranes.\",\"authors\":\"Simin Nazari, Arash Mollahosseini, Amira Abdelrasoul\",\"doi\":\"10.3390/membranes14110226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemodialysis is a critical treatment for patients with end-stage renal disease (ESRD) who lack kidney transplant options. The compatibility of hemodialysis membranes is vital, as incompatibility can trigger inflammation, coagulation, and immune responses, potentially increasing morbidity and mortality among patients with ESRD. This study employed molecular dynamics simulation (MDS) and molecular docking to assess the hemocompatible properties of Polyether Sulfone (PES) membranes modified via two distinct amine functionalization techniques. The molecular docking results demonstrated that side amine functionalization exhibited a lower affinity energy (-7.6) for fibrinogen compared to the middle amine functionalization (-8.2), suggesting enhanced antifouling properties and superior hemocompatibility. Additionally, side amine functionalization formed hydrogen bonds with four amino acids, enhancing its resistance to protein adhesion compared to three amino acids in the middle amine structure. Furthermore, the molecular dynamics simulations revealed differences in water mobility, with the side amine functionalized membranes showing a lower mobility value (9.74 × 10<sup>-7</sup>) than those treated with the middle amine method (9.85 × 10<sup>-7</sup>), indicating higher water stability and potentially better patient outcomes. This study's findings contribute to the design of more efficient and safer hemodialysis treatments by optimizing membrane materials.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596656/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14110226\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14110226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Computational Analysis of Amine Functionalization in Zwitterionized Polyether Sulfone Dialysis Membranes.
Hemodialysis is a critical treatment for patients with end-stage renal disease (ESRD) who lack kidney transplant options. The compatibility of hemodialysis membranes is vital, as incompatibility can trigger inflammation, coagulation, and immune responses, potentially increasing morbidity and mortality among patients with ESRD. This study employed molecular dynamics simulation (MDS) and molecular docking to assess the hemocompatible properties of Polyether Sulfone (PES) membranes modified via two distinct amine functionalization techniques. The molecular docking results demonstrated that side amine functionalization exhibited a lower affinity energy (-7.6) for fibrinogen compared to the middle amine functionalization (-8.2), suggesting enhanced antifouling properties and superior hemocompatibility. Additionally, side amine functionalization formed hydrogen bonds with four amino acids, enhancing its resistance to protein adhesion compared to three amino acids in the middle amine structure. Furthermore, the molecular dynamics simulations revealed differences in water mobility, with the side amine functionalized membranes showing a lower mobility value (9.74 × 10-7) than those treated with the middle amine method (9.85 × 10-7), indicating higher water stability and potentially better patient outcomes. This study's findings contribute to the design of more efficient and safer hemodialysis treatments by optimizing membrane materials.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.