运动作为肥胖症的治疗策略:中枢和外周机制

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2024-10-30 DOI:10.3390/metabo14110589
Yiyin Zhang, Ruwen Wang, Tiemin Liu, Ru Wang
{"title":"运动作为肥胖症的治疗策略:中枢和外周机制","authors":"Yiyin Zhang, Ruwen Wang, Tiemin Liu, Ru Wang","doi":"10.3390/metabo14110589","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exercise as a Therapeutic Strategy for Obesity: Central and Peripheral Mechanisms.\",\"authors\":\"Yiyin Zhang, Ruwen Wang, Tiemin Liu, Ru Wang\",\"doi\":\"10.3390/metabo14110589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14110589\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14110589","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥胖症是一种复杂的多因素疾病,由于能量摄入与消耗不平衡而导致脂肪过度堆积,其全球发病率正在稳步上升。这种情况大大增加了罹患肌肉疏松症、2 型糖尿病和心血管疾病等慢性疾病的风险,因此需要采取有效的干预措施。运动已成为一种有效的非药物治疗肥胖症的方法,它针对调节新陈代谢、能量消耗和神经功能的中枢和外周机制。在中枢神经系统中,运动通过调节奖赏系统和食欲控制激素来控制能量摄入,从而影响食欲、情绪和认知功能。同时,运动还能促进脂肪组织的产热,调节内分泌途径以及骨骼肌和肝脏等关键代谢器官,从而加强脂肪氧化,支持能量平衡。尽管人们对运动在肥胖症中的作用有了更深入的了解,但对神经生物学途径和外周代谢途径之间的精确相互作用仍然缺乏探索,尤其是在公共卫生战略方面。如果能更好地了解这些相互作用,就能通过解决中枢神经系统对行为和外周代谢调节的影响,为更全面的肥胖管理方法提供依据。这篇综述综述了最近对这些作用的认识,强调了针对这两个系统的潜在治疗策略,以实现更有效的肥胖干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exercise as a Therapeutic Strategy for Obesity: Central and Peripheral Mechanisms.

Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信