利用具有光催化活性的纳米复合膜去除药物。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Marin Popović, Silvia Morović, Marin Kovačić, Krešimir Košutić
{"title":"利用具有光催化活性的纳米复合膜去除药物。","authors":"Marin Popović, Silvia Morović, Marin Kovačić, Krešimir Košutić","doi":"10.3390/membranes14110239","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of pharmaceutical science has resulted in the development of numerous tailor-made compounds, i.e., pharmaceuticals, tuned for specific drug targets. These compounds are often characterized by their low biodegradability and are commonly excreted to a certain extent unchanged from the human body. Due to their low biodegradability, these compounds represent a significant challenge to wastewater treatment plants. Often, these compounds end up in effluents in the environment. With the advancement of membrane technologies and advanced oxidation processes, photocatalysis in particular, a synergistic approach between the two was recognized and embraced. These hybrid advanced water treatment processes are the focus of this review, specifically the removal of pharmaceuticals from water using a combination of a photocatalyst and pressure membrane process, such as reverse osmosis or nanofiltration employing photocatalytic nanocomposite membranes.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmaceutical Removal with Photocatalytically Active Nanocomposite Membranes.\",\"authors\":\"Marin Popović, Silvia Morović, Marin Kovačić, Krešimir Košutić\",\"doi\":\"10.3390/membranes14110239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of pharmaceutical science has resulted in the development of numerous tailor-made compounds, i.e., pharmaceuticals, tuned for specific drug targets. These compounds are often characterized by their low biodegradability and are commonly excreted to a certain extent unchanged from the human body. Due to their low biodegradability, these compounds represent a significant challenge to wastewater treatment plants. Often, these compounds end up in effluents in the environment. With the advancement of membrane technologies and advanced oxidation processes, photocatalysis in particular, a synergistic approach between the two was recognized and embraced. These hybrid advanced water treatment processes are the focus of this review, specifically the removal of pharmaceuticals from water using a combination of a photocatalyst and pressure membrane process, such as reverse osmosis or nanofiltration employing photocatalytic nanocomposite membranes.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14110239\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14110239","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着制药科学的发展,开发出了许多针对特定药物靶点的定制化合物,即药物。这些化合物通常具有生物降解性低的特点,通常会在一定程度上原封不动地排出体外。由于生物降解性低,这些化合物给污水处理厂带来了巨大挑战。通常情况下,这些化合物最终会被排入环境中。随着膜技术和高级氧化工艺,特别是光催化技术的发展,人们认识到并接受了两者之间的协同作用。这些混合先进水处理工艺是本综述的重点,特别是利用光催化剂和压力膜工艺(如采用光催化纳米复合膜的反渗透或纳滤)的组合去除水中的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmaceutical Removal with Photocatalytically Active Nanocomposite Membranes.

The advancement of pharmaceutical science has resulted in the development of numerous tailor-made compounds, i.e., pharmaceuticals, tuned for specific drug targets. These compounds are often characterized by their low biodegradability and are commonly excreted to a certain extent unchanged from the human body. Due to their low biodegradability, these compounds represent a significant challenge to wastewater treatment plants. Often, these compounds end up in effluents in the environment. With the advancement of membrane technologies and advanced oxidation processes, photocatalysis in particular, a synergistic approach between the two was recognized and embraced. These hybrid advanced water treatment processes are the focus of this review, specifically the removal of pharmaceuticals from water using a combination of a photocatalyst and pressure membrane process, such as reverse osmosis or nanofiltration employing photocatalytic nanocomposite membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信