Eric Pimentel, Mohammad Mehdi Banoei, Jasnoor Kaur, Chel Hee Lee, Brent W Winston
{"title":"代谢组学对 COVID-19 严重性的启示:范围审查。","authors":"Eric Pimentel, Mohammad Mehdi Banoei, Jasnoor Kaur, Chel Hee Lee, Brent W Winston","doi":"10.3390/metabo14110617","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In 2019, SARS-CoV-2, the novel coronavirus, entered the world scene, presenting a global health crisis with a broad spectrum of clinical manifestations. Recognizing the significance of metabolomics as the omics closest to symptomatology, it has become a useful tool for predicting clinical outcomes. Several metabolomic studies have indicated variations in the metabolome corresponding to different disease severities, highlighting the potential of metabolomics to unravel crucial insights into the pathophysiology of SARS-CoV-2 infection.</p><p><strong>Methods: </strong>The PRISMA guidelines were followed for this scoping review. Three major scientific databases were searched: PubMed, the Directory of Open Access Journals (DOAJ), and BioMed Central, from 2020 to 2024. Initially, 2938 articles were identified and vetted with specific inclusion and exclusion criteria. Of these, 42 articles were retrieved for analysis and summary.</p><p><strong>Results: </strong>Metabolites were identified that were repeatedly noted to change with COVID-19 and its severity. Phenylalanine, glucose, and glutamic acid increased with severity, while tryptophan, proline, and glutamine decreased, highlighting their association with COVID-19 severity. Additionally, pathway analysis revealed that phenylalanine, tyrosine and tryptophan biosynthesis, and arginine biosynthesis were the most significantly impacted pathways in COVID-19 severity.</p><p><strong>Conclusions: </strong>COVID-19 severity is intricately linked to significant metabolic alterations that span amino acid metabolism, energy production, immune response modulation, and redox balance.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomic Insights into COVID-19 Severity: A Scoping Review.\",\"authors\":\"Eric Pimentel, Mohammad Mehdi Banoei, Jasnoor Kaur, Chel Hee Lee, Brent W Winston\",\"doi\":\"10.3390/metabo14110617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In 2019, SARS-CoV-2, the novel coronavirus, entered the world scene, presenting a global health crisis with a broad spectrum of clinical manifestations. Recognizing the significance of metabolomics as the omics closest to symptomatology, it has become a useful tool for predicting clinical outcomes. Several metabolomic studies have indicated variations in the metabolome corresponding to different disease severities, highlighting the potential of metabolomics to unravel crucial insights into the pathophysiology of SARS-CoV-2 infection.</p><p><strong>Methods: </strong>The PRISMA guidelines were followed for this scoping review. Three major scientific databases were searched: PubMed, the Directory of Open Access Journals (DOAJ), and BioMed Central, from 2020 to 2024. Initially, 2938 articles were identified and vetted with specific inclusion and exclusion criteria. Of these, 42 articles were retrieved for analysis and summary.</p><p><strong>Results: </strong>Metabolites were identified that were repeatedly noted to change with COVID-19 and its severity. Phenylalanine, glucose, and glutamic acid increased with severity, while tryptophan, proline, and glutamine decreased, highlighting their association with COVID-19 severity. Additionally, pathway analysis revealed that phenylalanine, tyrosine and tryptophan biosynthesis, and arginine biosynthesis were the most significantly impacted pathways in COVID-19 severity.</p><p><strong>Conclusions: </strong>COVID-19 severity is intricately linked to significant metabolic alterations that span amino acid metabolism, energy production, immune response modulation, and redox balance.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14110617\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14110617","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolomic Insights into COVID-19 Severity: A Scoping Review.
Background: In 2019, SARS-CoV-2, the novel coronavirus, entered the world scene, presenting a global health crisis with a broad spectrum of clinical manifestations. Recognizing the significance of metabolomics as the omics closest to symptomatology, it has become a useful tool for predicting clinical outcomes. Several metabolomic studies have indicated variations in the metabolome corresponding to different disease severities, highlighting the potential of metabolomics to unravel crucial insights into the pathophysiology of SARS-CoV-2 infection.
Methods: The PRISMA guidelines were followed for this scoping review. Three major scientific databases were searched: PubMed, the Directory of Open Access Journals (DOAJ), and BioMed Central, from 2020 to 2024. Initially, 2938 articles were identified and vetted with specific inclusion and exclusion criteria. Of these, 42 articles were retrieved for analysis and summary.
Results: Metabolites were identified that were repeatedly noted to change with COVID-19 and its severity. Phenylalanine, glucose, and glutamic acid increased with severity, while tryptophan, proline, and glutamine decreased, highlighting their association with COVID-19 severity. Additionally, pathway analysis revealed that phenylalanine, tyrosine and tryptophan biosynthesis, and arginine biosynthesis were the most significantly impacted pathways in COVID-19 severity.
Conclusions: COVID-19 severity is intricately linked to significant metabolic alterations that span amino acid metabolism, energy production, immune response modulation, and redox balance.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.