{"title":"海洋细菌(Rheinheimera sp.具有琼脂糖降解酶的海洋细菌(Rheinheimera sp.","authors":"Youshi Huang, Takuya Hirose, Jyh-Ming Tsai, Katsuya Hirasaka","doi":"10.3390/md22110515","DOIUrl":null,"url":null,"abstract":"<p><p>Agarase and its metabolites are reported to have applications in a variety of fields, but there have been few studies of the effects of agaro-oligosaccharide hydrolysate on muscle function. In this study, we analyzed the functionality of agarase and its metabolites in bacteria isolated from seawater. A bacterium with agar-degrading activity was isolated from Shimabara, Nagasaki, Japan. Through 16S rRNA sequence alignment, it was identified as being closely related to <i>Rheinheimera</i> sp. WMF-1 and was provisionally named <i>Rheinheimera</i> sp. (HY). Crude enzymes derived from this bacterium demonstrated an ability to hydrolyze various polysaccharides, including agar, agarose, and starch, with the highest specificity observed for agarose. The optimum pH and temperature were pH 10 and 50 °C. A glycoside bond specificity analysis of enzymatic activity indicated the cleavage of the α-linkage. Next, we investigated the functional effects of agaro-oligosaccharides on C2C12 myotubes. Treatment with 10-30 kDa oligosaccharides significantly increased the hypertrophy rate, diameter, and expression of myosin heavy-chain genes in C2C12 myotubes. These results indicate that the agaro-oligosaccharides produced by the enzymes identified in this study improve muscle mass, suggesting their potential contribution to muscle function.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 11","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595872/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effects of Agaro-Oligosaccharides Produced by Marine Bacteria (<i>Rheinheimera</i> sp. (HY)) Possessing Agarose-Degrading Enzymes on Myotube Function.\",\"authors\":\"Youshi Huang, Takuya Hirose, Jyh-Ming Tsai, Katsuya Hirasaka\",\"doi\":\"10.3390/md22110515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agarase and its metabolites are reported to have applications in a variety of fields, but there have been few studies of the effects of agaro-oligosaccharide hydrolysate on muscle function. In this study, we analyzed the functionality of agarase and its metabolites in bacteria isolated from seawater. A bacterium with agar-degrading activity was isolated from Shimabara, Nagasaki, Japan. Through 16S rRNA sequence alignment, it was identified as being closely related to <i>Rheinheimera</i> sp. WMF-1 and was provisionally named <i>Rheinheimera</i> sp. (HY). Crude enzymes derived from this bacterium demonstrated an ability to hydrolyze various polysaccharides, including agar, agarose, and starch, with the highest specificity observed for agarose. The optimum pH and temperature were pH 10 and 50 °C. A glycoside bond specificity analysis of enzymatic activity indicated the cleavage of the α-linkage. Next, we investigated the functional effects of agaro-oligosaccharides on C2C12 myotubes. Treatment with 10-30 kDa oligosaccharides significantly increased the hypertrophy rate, diameter, and expression of myosin heavy-chain genes in C2C12 myotubes. These results indicate that the agaro-oligosaccharides produced by the enzymes identified in this study improve muscle mass, suggesting their potential contribution to muscle function.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"22 11\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md22110515\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22110515","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The Effects of Agaro-Oligosaccharides Produced by Marine Bacteria (Rheinheimera sp. (HY)) Possessing Agarose-Degrading Enzymes on Myotube Function.
Agarase and its metabolites are reported to have applications in a variety of fields, but there have been few studies of the effects of agaro-oligosaccharide hydrolysate on muscle function. In this study, we analyzed the functionality of agarase and its metabolites in bacteria isolated from seawater. A bacterium with agar-degrading activity was isolated from Shimabara, Nagasaki, Japan. Through 16S rRNA sequence alignment, it was identified as being closely related to Rheinheimera sp. WMF-1 and was provisionally named Rheinheimera sp. (HY). Crude enzymes derived from this bacterium demonstrated an ability to hydrolyze various polysaccharides, including agar, agarose, and starch, with the highest specificity observed for agarose. The optimum pH and temperature were pH 10 and 50 °C. A glycoside bond specificity analysis of enzymatic activity indicated the cleavage of the α-linkage. Next, we investigated the functional effects of agaro-oligosaccharides on C2C12 myotubes. Treatment with 10-30 kDa oligosaccharides significantly increased the hypertrophy rate, diameter, and expression of myosin heavy-chain genes in C2C12 myotubes. These results indicate that the agaro-oligosaccharides produced by the enzymes identified in this study improve muscle mass, suggesting their potential contribution to muscle function.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.