{"title":"利用基于选择性分子印迹聚合物的纳米探针对海水中的痕量啶虫脒进行荧光开启识别。","authors":"Xiaochen Hao, Cheng He, Ziru Lian","doi":"10.1016/j.marpolbul.2024.117320","DOIUrl":null,"url":null,"abstract":"<p><p>A novel imprinted composite nanoprobe for fluorescence turn-on recognition of acetamiprid was fabricated and applied to rapidly and sensitively detect trace-level acetamiprid in seawater. The fluorescent probe was prepared using modified fluorescein isothiocyanate as a response unit to improve the sensitivity of signal transmission. The quantitative analysis of acetamiprid was obtained by measuring fluorescence enhancement efficiency of the probe. Under optimal conditions, a good linear relationship with a determination coefficient of 0.9988 was demonstrated in the range of 0-45 μg L<sup>-1</sup> and the limit of detection was 1.5 μg L<sup>-1</sup>. The developed fluorescence-enhancing nanoprobe was utilized in determination of acetamiprid in seawater samples and achieved recoveries from 96.00 % to 104.00 % with the relative standard deviations <5.88 % (n = 3). This study offered a promising strategy for simple, reliable and sensitive detection of acetamiprid by embedding fluorescent dye in molecularly imprinted material as highly selective probes.</p>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"210 ","pages":"117320"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescence turn-on recognition of trace acetamiprid in seawater using selective molecularly imprinted polymer-based nanoprobe.\",\"authors\":\"Xiaochen Hao, Cheng He, Ziru Lian\",\"doi\":\"10.1016/j.marpolbul.2024.117320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel imprinted composite nanoprobe for fluorescence turn-on recognition of acetamiprid was fabricated and applied to rapidly and sensitively detect trace-level acetamiprid in seawater. The fluorescent probe was prepared using modified fluorescein isothiocyanate as a response unit to improve the sensitivity of signal transmission. The quantitative analysis of acetamiprid was obtained by measuring fluorescence enhancement efficiency of the probe. Under optimal conditions, a good linear relationship with a determination coefficient of 0.9988 was demonstrated in the range of 0-45 μg L<sup>-1</sup> and the limit of detection was 1.5 μg L<sup>-1</sup>. The developed fluorescence-enhancing nanoprobe was utilized in determination of acetamiprid in seawater samples and achieved recoveries from 96.00 % to 104.00 % with the relative standard deviations <5.88 % (n = 3). This study offered a promising strategy for simple, reliable and sensitive detection of acetamiprid by embedding fluorescent dye in molecularly imprinted material as highly selective probes.</p>\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"210 \",\"pages\":\"117320\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.marpolbul.2024.117320\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marpolbul.2024.117320","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fluorescence turn-on recognition of trace acetamiprid in seawater using selective molecularly imprinted polymer-based nanoprobe.
A novel imprinted composite nanoprobe for fluorescence turn-on recognition of acetamiprid was fabricated and applied to rapidly and sensitively detect trace-level acetamiprid in seawater. The fluorescent probe was prepared using modified fluorescein isothiocyanate as a response unit to improve the sensitivity of signal transmission. The quantitative analysis of acetamiprid was obtained by measuring fluorescence enhancement efficiency of the probe. Under optimal conditions, a good linear relationship with a determination coefficient of 0.9988 was demonstrated in the range of 0-45 μg L-1 and the limit of detection was 1.5 μg L-1. The developed fluorescence-enhancing nanoprobe was utilized in determination of acetamiprid in seawater samples and achieved recoveries from 96.00 % to 104.00 % with the relative standard deviations <5.88 % (n = 3). This study offered a promising strategy for simple, reliable and sensitive detection of acetamiprid by embedding fluorescent dye in molecularly imprinted material as highly selective probes.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.