{"title":"丝胶蛋白:结构、特性和应用。","authors":"Rony Aad, Ivana Dragojlov, Simone Vesentini","doi":"10.3390/jfb15110322","DOIUrl":null,"url":null,"abstract":"<p><p>Silk sericin, the glue protein binding fibroin fibers together, is present in the <i>Bombyx mori</i> silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sericin Protein: Structure, Properties, and Applications.\",\"authors\":\"Rony Aad, Ivana Dragojlov, Simone Vesentini\",\"doi\":\"10.3390/jfb15110322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silk sericin, the glue protein binding fibroin fibers together, is present in the <i>Bombyx mori</i> silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15110322\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110322","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sericin Protein: Structure, Properties, and Applications.
Silk sericin, the glue protein binding fibroin fibers together, is present in the Bombyx mori silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.