{"title":"用 PEI 封端上转换纳米粒子和氯素 e6 进行近红外光光动力疗法可诱导口腔癌细胞凋亡","authors":"Jinhao Cui, Yoshimasa Makita, Tomoharu Okamura, Chihoko Ikeda, Shin-Ichi Fujiwara, Kazuya Tominaga","doi":"10.3390/jfb15110333","DOIUrl":null,"url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF<sub>4</sub>:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (<i>p</i> < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (<i>p</i> < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (<i>p</i> < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595556/pdf/","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells.\",\"authors\":\"Jinhao Cui, Yoshimasa Makita, Tomoharu Okamura, Chihoko Ikeda, Shin-Ichi Fujiwara, Kazuya Tominaga\",\"doi\":\"10.3390/jfb15110333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF<sub>4</sub>:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (<i>p</i> < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (<i>p</i> < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (<i>p</i> < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15110333\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110333","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells.
Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF4:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (p < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (p < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (p < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.