{"title":"钛基台与 PEEK 愈合基台牙菌斑累积情况的比较","authors":"Suphachai Suphangul, Patr Pujarern, Dinesh Rokaya, Chatruethai Kanchanasobhana, Pimduen Rungsiyakull, Pisaisit Chaijareenont","doi":"10.3390/jfb15110334","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium (Ti) is considered the gold standard material for provisional implant restorations. Polyetheretherketone (PEEK), a polymeric thermoplastic material, has been progressively used in prosthetic, restorative, and implant dentistry. Recently, PEEK has been used in implant dentistry as a provisional implant restoration. Plaque accumulation and biofilm formation become the major concerns when infection and inflammation occur in the peri-implant tissue. Few reports were studied regarding the biofilm formation on the PEEK surface. This study aimed to compare plaque accumulation between the PEEK and Ti healing abutments. In an in vitro setting, the Ti healing abutment and PEEK healing abutment were subjected to biofilm formation; the result was collected after 24 h, 48 h, 72 h, and 7 days. Biofilms were studied following staining with crystal violet. The data were analyzed by Two-Way ANOVA. It was found that between Ti healing abutment and PEEK healing abutment materials, the biofilm formation on the PEEK surface is slightly higher than Ti, but no statistical difference (<i>p</i> > 0.05) was found. The results suggested that plaque accumulation between the Ti healing abutment and the PEEK healing abutment was not different. We concluded that the plaque accumulation on the surface PEEK healing abutment was similar to the conventional Ti healing abutment materials. Hence, both the PEEK and Ti healing abutments can be used as a healing abutment biomaterial according to the requirements of the prostheses in implant dentistry.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595035/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Plaque Accumulation Between Titanium and PEEK Healing Abutments.\",\"authors\":\"Suphachai Suphangul, Patr Pujarern, Dinesh Rokaya, Chatruethai Kanchanasobhana, Pimduen Rungsiyakull, Pisaisit Chaijareenont\",\"doi\":\"10.3390/jfb15110334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium (Ti) is considered the gold standard material for provisional implant restorations. Polyetheretherketone (PEEK), a polymeric thermoplastic material, has been progressively used in prosthetic, restorative, and implant dentistry. Recently, PEEK has been used in implant dentistry as a provisional implant restoration. Plaque accumulation and biofilm formation become the major concerns when infection and inflammation occur in the peri-implant tissue. Few reports were studied regarding the biofilm formation on the PEEK surface. This study aimed to compare plaque accumulation between the PEEK and Ti healing abutments. In an in vitro setting, the Ti healing abutment and PEEK healing abutment were subjected to biofilm formation; the result was collected after 24 h, 48 h, 72 h, and 7 days. Biofilms were studied following staining with crystal violet. The data were analyzed by Two-Way ANOVA. It was found that between Ti healing abutment and PEEK healing abutment materials, the biofilm formation on the PEEK surface is slightly higher than Ti, but no statistical difference (<i>p</i> > 0.05) was found. The results suggested that plaque accumulation between the Ti healing abutment and the PEEK healing abutment was not different. We concluded that the plaque accumulation on the surface PEEK healing abutment was similar to the conventional Ti healing abutment materials. Hence, both the PEEK and Ti healing abutments can be used as a healing abutment biomaterial according to the requirements of the prostheses in implant dentistry.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15110334\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110334","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comparison of Plaque Accumulation Between Titanium and PEEK Healing Abutments.
Titanium (Ti) is considered the gold standard material for provisional implant restorations. Polyetheretherketone (PEEK), a polymeric thermoplastic material, has been progressively used in prosthetic, restorative, and implant dentistry. Recently, PEEK has been used in implant dentistry as a provisional implant restoration. Plaque accumulation and biofilm formation become the major concerns when infection and inflammation occur in the peri-implant tissue. Few reports were studied regarding the biofilm formation on the PEEK surface. This study aimed to compare plaque accumulation between the PEEK and Ti healing abutments. In an in vitro setting, the Ti healing abutment and PEEK healing abutment were subjected to biofilm formation; the result was collected after 24 h, 48 h, 72 h, and 7 days. Biofilms were studied following staining with crystal violet. The data were analyzed by Two-Way ANOVA. It was found that between Ti healing abutment and PEEK healing abutment materials, the biofilm formation on the PEEK surface is slightly higher than Ti, but no statistical difference (p > 0.05) was found. The results suggested that plaque accumulation between the Ti healing abutment and the PEEK healing abutment was not different. We concluded that the plaque accumulation on the surface PEEK healing abutment was similar to the conventional Ti healing abutment materials. Hence, both the PEEK and Ti healing abutments can be used as a healing abutment biomaterial according to the requirements of the prostheses in implant dentistry.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.