{"title":"紫外线-B 辐射刺激荞麦芽的类黄酮生物合成和抗氧化系统","authors":"Xin Tian, Meixia Hu, Jia Yang, Yongqi Yin, Weiming Fang","doi":"10.3390/foods13223650","DOIUrl":null,"url":null,"abstract":"<p><p>Abiotic stress not only elevates the synthesis of secondary metabolites in plant sprouts but also boosts their antioxidant capacity. In this study, the mechanisms of flavonoid biosynthesis and antioxidant systems in buckwheat sprouts exposed to ultraviolet-B (UV-B) radiation were investigated. The findings revealed that UV-B treatment significantly increased flavonoid content in buckwheat sprouts, with 3-day-old sprouts exhibiting a flavonoid content 1.73 times greater than that of the control treatment. UV-B radiation significantly increased the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, cinnamate 4-hydroxylase, and chalcone synthase) and the relative expression levels of the corresponding genes. Although UV-B radiation caused damage to the cell membranes of buckwheat sprouts, promoting increases in hydrogen peroxide and malondialdehyde content and inhibiting the growth of sprouts, importantly, UV-B radiation also significantly increased the activities of catalase, peroxidase, and superoxide dismutase as well as the relative expression levels of the corresponding genes, thus enhancing the antioxidant system of buckwheat sprouts. This enhancement was corroborated by a notable increase in ABTS, DPPH, and FRAP radical scavenging activities in 3-day-old sprouts subjected to UV-B radiation. Additionally, UV-B radiation significantly increased chlorophyll <i>a</i> and chlorophyll <i>b</i> contents in sprouts. These results suggest that UV-B radiation is advantageous for cultivating buckwheat sprouts with increased flavonoid content and enhanced antioxidant capacity.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts.\",\"authors\":\"Xin Tian, Meixia Hu, Jia Yang, Yongqi Yin, Weiming Fang\",\"doi\":\"10.3390/foods13223650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abiotic stress not only elevates the synthesis of secondary metabolites in plant sprouts but also boosts their antioxidant capacity. In this study, the mechanisms of flavonoid biosynthesis and antioxidant systems in buckwheat sprouts exposed to ultraviolet-B (UV-B) radiation were investigated. The findings revealed that UV-B treatment significantly increased flavonoid content in buckwheat sprouts, with 3-day-old sprouts exhibiting a flavonoid content 1.73 times greater than that of the control treatment. UV-B radiation significantly increased the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, cinnamate 4-hydroxylase, and chalcone synthase) and the relative expression levels of the corresponding genes. Although UV-B radiation caused damage to the cell membranes of buckwheat sprouts, promoting increases in hydrogen peroxide and malondialdehyde content and inhibiting the growth of sprouts, importantly, UV-B radiation also significantly increased the activities of catalase, peroxidase, and superoxide dismutase as well as the relative expression levels of the corresponding genes, thus enhancing the antioxidant system of buckwheat sprouts. This enhancement was corroborated by a notable increase in ABTS, DPPH, and FRAP radical scavenging activities in 3-day-old sprouts subjected to UV-B radiation. Additionally, UV-B radiation significantly increased chlorophyll <i>a</i> and chlorophyll <i>b</i> contents in sprouts. These results suggest that UV-B radiation is advantageous for cultivating buckwheat sprouts with increased flavonoid content and enhanced antioxidant capacity.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"13 22\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13223650\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13223650","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts.
Abiotic stress not only elevates the synthesis of secondary metabolites in plant sprouts but also boosts their antioxidant capacity. In this study, the mechanisms of flavonoid biosynthesis and antioxidant systems in buckwheat sprouts exposed to ultraviolet-B (UV-B) radiation were investigated. The findings revealed that UV-B treatment significantly increased flavonoid content in buckwheat sprouts, with 3-day-old sprouts exhibiting a flavonoid content 1.73 times greater than that of the control treatment. UV-B radiation significantly increased the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, cinnamate 4-hydroxylase, and chalcone synthase) and the relative expression levels of the corresponding genes. Although UV-B radiation caused damage to the cell membranes of buckwheat sprouts, promoting increases in hydrogen peroxide and malondialdehyde content and inhibiting the growth of sprouts, importantly, UV-B radiation also significantly increased the activities of catalase, peroxidase, and superoxide dismutase as well as the relative expression levels of the corresponding genes, thus enhancing the antioxidant system of buckwheat sprouts. This enhancement was corroborated by a notable increase in ABTS, DPPH, and FRAP radical scavenging activities in 3-day-old sprouts subjected to UV-B radiation. Additionally, UV-B radiation significantly increased chlorophyll a and chlorophyll b contents in sprouts. These results suggest that UV-B radiation is advantageous for cultivating buckwheat sprouts with increased flavonoid content and enhanced antioxidant capacity.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds