具有相反论据的相干相态叠加的统计特性。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-11-15 DOI:10.3390/e26110977
Miguel Citeli de Freitas, Viktor V Dodonov
{"title":"具有相反论据的相干相态叠加的统计特性。","authors":"Miguel Citeli de Freitas, Viktor V Dodonov","doi":"10.3390/e26110977","DOIUrl":null,"url":null,"abstract":"<p><p>We calculate the second-order moments, the Robertson-Schrödinger uncertainty product, and the Mandel factor for various superpositions of coherent phase states with opposite arguments, comparing the results with similar superpositions of the usual (Klauder-Glauber-Sudarshan) coherent states. We discover that the coordinate variance in the analog of even coherent states can show the most strong squeezing effect, close to the maximal possible squeezing for the given mean photon number. On the other hand, the Robertson-Schrödinger (RS) uncertainty product in superpositions of coherent phase states increases much slower (as function of the mean photon number) than in superpositions of the usual coherent states. A nontrivial behavior of the Mandel factor for small mean photon numbers is discovered in superpositions with unequal weights of two components. An exceptional nature of the even and odd superpositions is demonstrated.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Statistical Properties of Superpositions of Coherent Phase States with Opposite Arguments.\",\"authors\":\"Miguel Citeli de Freitas, Viktor V Dodonov\",\"doi\":\"10.3390/e26110977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We calculate the second-order moments, the Robertson-Schrödinger uncertainty product, and the Mandel factor for various superpositions of coherent phase states with opposite arguments, comparing the results with similar superpositions of the usual (Klauder-Glauber-Sudarshan) coherent states. We discover that the coordinate variance in the analog of even coherent states can show the most strong squeezing effect, close to the maximal possible squeezing for the given mean photon number. On the other hand, the Robertson-Schrödinger (RS) uncertainty product in superpositions of coherent phase states increases much slower (as function of the mean photon number) than in superpositions of the usual coherent states. A nontrivial behavior of the Mandel factor for small mean photon numbers is discovered in superpositions with unequal weights of two components. An exceptional nature of the even and odd superpositions is demonstrated.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110977\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110977","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了具有相反论点的各种相干相态叠加的二阶矩、罗伯逊-薛定谔不确定性乘积和曼德尔因子,并将结果与通常(克劳德-格劳伯-苏达山)相干态的类似叠加进行了比较。我们发现,在偶相干态的模拟中,坐标方差会表现出最强烈的挤压效应,接近于给定平均光子数的最大可能挤压。另一方面,相干相态叠加中的罗伯逊-薛定谔(RS)不确定性积(作为平均光子数的函数)的增长速度比通常相干态叠加中的增长速度要慢得多。在两个分量权重不相等的叠加中,发现了小平均光子数下曼德尔因子的非特权行为。证明了偶数和奇数叠加的特殊性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Properties of Superpositions of Coherent Phase States with Opposite Arguments.

We calculate the second-order moments, the Robertson-Schrödinger uncertainty product, and the Mandel factor for various superpositions of coherent phase states with opposite arguments, comparing the results with similar superpositions of the usual (Klauder-Glauber-Sudarshan) coherent states. We discover that the coordinate variance in the analog of even coherent states can show the most strong squeezing effect, close to the maximal possible squeezing for the given mean photon number. On the other hand, the Robertson-Schrödinger (RS) uncertainty product in superpositions of coherent phase states increases much slower (as function of the mean photon number) than in superpositions of the usual coherent states. A nontrivial behavior of the Mandel factor for small mean photon numbers is discovered in superpositions with unequal weights of two components. An exceptional nature of the even and odd superpositions is demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信