用于中性镱原子能级计算的机器学习辅助哈特里-福克方法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-11-08 DOI:10.3390/e26110962
Kaichen Ma, Chen Yang, Junyao Zhang, Yunfei Li, Gang Jiang, Junjie Chai
{"title":"用于中性镱原子能级计算的机器学习辅助哈特里-福克方法。","authors":"Kaichen Ma, Chen Yang, Junyao Zhang, Yunfei Li, Gang Jiang, Junjie Chai","doi":"10.3390/e26110962","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven machine learning approaches with precise predictive capabilities are proposed to address the long-standing challenges in the calculation of complex many-electron atomic systems, including high computational costs and limited accuracy. In this work, we develop a general workflow for machine learning-assisted atomic structure calculations based on the Cowan code's Hartree-Fock with relativistic corrections (HFR) theory. The workflow incorporates enhanced ElasticNet and XGBoost algorithms, refined using entropy weight methodology to optimize performance. This semi-empirical framework is applied to calculate and analyze the excited state energy levels of the 4<i>f</i> closed-shell Yb I atom, providing insights into the applicability of different algorithms under various conditions. The reliability and advantages of this innovative approach are demonstrated through comprehensive comparisons with ab initio calculations, experimental data, and other theoretical results.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593007/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Hartree-Fock Approach for Energy Level Calculations in the Neutral Ytterbium Atom.\",\"authors\":\"Kaichen Ma, Chen Yang, Junyao Zhang, Yunfei Li, Gang Jiang, Junjie Chai\",\"doi\":\"10.3390/e26110962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-driven machine learning approaches with precise predictive capabilities are proposed to address the long-standing challenges in the calculation of complex many-electron atomic systems, including high computational costs and limited accuracy. In this work, we develop a general workflow for machine learning-assisted atomic structure calculations based on the Cowan code's Hartree-Fock with relativistic corrections (HFR) theory. The workflow incorporates enhanced ElasticNet and XGBoost algorithms, refined using entropy weight methodology to optimize performance. This semi-empirical framework is applied to calculate and analyze the excited state energy levels of the 4<i>f</i> closed-shell Yb I atom, providing insights into the applicability of different algorithms under various conditions. The reliability and advantages of this innovative approach are demonstrated through comprehensive comparisons with ab initio calculations, experimental data, and other theoretical results.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593007/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110962\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110962","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了具有精确预测能力的数据驱动机器学习方法,以解决复杂多电子原子系统计算中长期面临的挑战,包括计算成本高和精度有限。在这项工作中,我们基于 Cowan 代码的哈特里-福克相对论修正(HFR)理论,开发了机器学习辅助原子结构计算的一般工作流程。该工作流程结合了增强型 ElasticNet 和 XGBoost 算法,并使用熵权方法进行了改进,以优化性能。这种半经验框架被用于计算和分析 4f 闭壳 Yb I 原子的激发态能级,从而深入了解不同算法在各种条件下的适用性。通过与 ab initio 计算、实验数据和其他理论结果的综合比较,证明了这种创新方法的可靠性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Assisted Hartree-Fock Approach for Energy Level Calculations in the Neutral Ytterbium Atom.

Data-driven machine learning approaches with precise predictive capabilities are proposed to address the long-standing challenges in the calculation of complex many-electron atomic systems, including high computational costs and limited accuracy. In this work, we develop a general workflow for machine learning-assisted atomic structure calculations based on the Cowan code's Hartree-Fock with relativistic corrections (HFR) theory. The workflow incorporates enhanced ElasticNet and XGBoost algorithms, refined using entropy weight methodology to optimize performance. This semi-empirical framework is applied to calculate and analyze the excited state energy levels of the 4f closed-shell Yb I atom, providing insights into the applicability of different algorithms under various conditions. The reliability and advantages of this innovative approach are demonstrated through comprehensive comparisons with ab initio calculations, experimental data, and other theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信