{"title":"随机漫步与洛伦兹过程","authors":"Domokos Szász","doi":"10.3390/e26110908","DOIUrl":null,"url":null,"abstract":"<p><p>Random walks and Lorentz processes serve as fundamental models for Brownian motion. The study of random walks is a favorite object of probability theory, whereas that of Lorentz processes belongs to the theory of hyperbolic dynamical systems. Here we first present an example where the method based on the probabilistic approach led to new results for the Lorentz process: concretely, the recurrence of the planar periodic Lorentz process with a finite horizon. Afterwards, an unsolved problem-related to a 1981 question of Sinai on locally perturbed periodic Lorentz processes-is formulated as an analogous problem in the language of random walks.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Random Walks and Lorentz Processes.\",\"authors\":\"Domokos Szász\",\"doi\":\"10.3390/e26110908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random walks and Lorentz processes serve as fundamental models for Brownian motion. The study of random walks is a favorite object of probability theory, whereas that of Lorentz processes belongs to the theory of hyperbolic dynamical systems. Here we first present an example where the method based on the probabilistic approach led to new results for the Lorentz process: concretely, the recurrence of the planar periodic Lorentz process with a finite horizon. Afterwards, an unsolved problem-related to a 1981 question of Sinai on locally perturbed periodic Lorentz processes-is formulated as an analogous problem in the language of random walks.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110908\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110908","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Random walks and Lorentz processes serve as fundamental models for Brownian motion. The study of random walks is a favorite object of probability theory, whereas that of Lorentz processes belongs to the theory of hyperbolic dynamical systems. Here we first present an example where the method based on the probabilistic approach led to new results for the Lorentz process: concretely, the recurrence of the planar periodic Lorentz process with a finite horizon. Afterwards, an unsolved problem-related to a 1981 question of Sinai on locally perturbed periodic Lorentz processes-is formulated as an analogous problem in the language of random walks.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.