通过信息瓶颈样动力学探索神经网络中加法捷径的影响:从 ResNet 到变压器

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-11-14 DOI:10.3390/e26110974
Zhaoyan Lyu, Miguel R D Rodrigues
{"title":"通过信息瓶颈样动力学探索神经网络中加法捷径的影响:从 ResNet 到变压器","authors":"Zhaoyan Lyu, Miguel R D Rodrigues","doi":"10.3390/e26110974","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has made significant strides, driving advances in areas like computer vision, natural language processing, and autonomous systems. In this paper, we further investigate the implications of the role of additive shortcut connections, focusing on models such as ResNet, Vision Transformers (ViTs), and MLP-Mixers, given that they are essential in enabling efficient information flow and mitigating optimization challenges such as vanishing gradients. In particular, capitalizing on our recent information bottleneck approach, we analyze how additive shortcuts influence the fitting and compression phases of training, crucial for generalization. We leverage Z-X and Z-Y measures as practical alternatives to mutual information for observing these dynamics in high-dimensional spaces. Our empirical results demonstrate that models with identity shortcuts (ISs) often skip the initial fitting phase and move directly into the compression phase, while non-identity shortcut (NIS) models follow the conventional two-phase process. Furthermore, we explore how IS models are still able to compress effectively, maintaining their generalization capacity despite bypassing the early fitting stages. These findings offer new insights into the dynamics of shortcut connections in neural networks, contributing to the optimization of modern deep learning architectures.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Impact of Additive Shortcuts in Neural Networks via Information Bottleneck-like Dynamics: From ResNet to Transformer.\",\"authors\":\"Zhaoyan Lyu, Miguel R D Rodrigues\",\"doi\":\"10.3390/e26110974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning has made significant strides, driving advances in areas like computer vision, natural language processing, and autonomous systems. In this paper, we further investigate the implications of the role of additive shortcut connections, focusing on models such as ResNet, Vision Transformers (ViTs), and MLP-Mixers, given that they are essential in enabling efficient information flow and mitigating optimization challenges such as vanishing gradients. In particular, capitalizing on our recent information bottleneck approach, we analyze how additive shortcuts influence the fitting and compression phases of training, crucial for generalization. We leverage Z-X and Z-Y measures as practical alternatives to mutual information for observing these dynamics in high-dimensional spaces. Our empirical results demonstrate that models with identity shortcuts (ISs) often skip the initial fitting phase and move directly into the compression phase, while non-identity shortcut (NIS) models follow the conventional two-phase process. Furthermore, we explore how IS models are still able to compress effectively, maintaining their generalization capacity despite bypassing the early fitting stages. These findings offer new insights into the dynamics of shortcut connections in neural networks, contributing to the optimization of modern deep learning architectures.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110974\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110974","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

深度学习取得了长足进步,推动了计算机视觉、自然语言处理和自主系统等领域的进步。在本文中,我们将以 ResNet、Vision Transformers (ViTs) 和 MLP-Mixers 等模型为重点,进一步研究加性捷径连接作用的影响,因为它们对实现高效信息流和缓解梯度消失等优化挑战至关重要。特别是,利用我们最近的信息瓶颈方法,我们分析了加法捷径如何影响训练的拟合和压缩阶段,这对泛化至关重要。我们利用 Z-X 和 Z-Y 测量作为互信息的实用替代方法,观察高维空间中的这些动态。我们的实证结果表明,具有身份捷径(IS)的模型往往跳过初始拟合阶段,直接进入压缩阶段,而非身份捷径(NIS)模型则遵循传统的两阶段过程。此外,我们还探讨了 IS 模型是如何在绕过早期拟合阶段的情况下仍能有效地进行压缩,保持其泛化能力的。这些发现为神经网络中的捷径连接动态提供了新的见解,有助于现代深度学习架构的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Impact of Additive Shortcuts in Neural Networks via Information Bottleneck-like Dynamics: From ResNet to Transformer.

Deep learning has made significant strides, driving advances in areas like computer vision, natural language processing, and autonomous systems. In this paper, we further investigate the implications of the role of additive shortcut connections, focusing on models such as ResNet, Vision Transformers (ViTs), and MLP-Mixers, given that they are essential in enabling efficient information flow and mitigating optimization challenges such as vanishing gradients. In particular, capitalizing on our recent information bottleneck approach, we analyze how additive shortcuts influence the fitting and compression phases of training, crucial for generalization. We leverage Z-X and Z-Y measures as practical alternatives to mutual information for observing these dynamics in high-dimensional spaces. Our empirical results demonstrate that models with identity shortcuts (ISs) often skip the initial fitting phase and move directly into the compression phase, while non-identity shortcut (NIS) models follow the conventional two-phase process. Furthermore, we explore how IS models are still able to compress effectively, maintaining their generalization capacity despite bypassing the early fitting stages. These findings offer new insights into the dynamics of shortcut connections in neural networks, contributing to the optimization of modern deep learning architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信