{"title":"单变量分布的 Kullback-Leibler Divergence 精确表达式。","authors":"Victor Nawa, Saralees Nadarajah","doi":"10.3390/e26110959","DOIUrl":null,"url":null,"abstract":"<p><p>The Kullback-Leibler divergence (KL divergence) is a statistical measure that quantifies the difference between two probability distributions. Specifically, it assesses the amount of information that is lost when one distribution is used to approximate another. This concept is crucial in various fields, including information theory, statistics, and machine learning, as it helps in understanding how well a model represents the underlying data. In a recent study by Nawa and Nadarajah, a comprehensive collection of exact expressions for the Kullback-Leibler divergence was derived for both multivariate and matrix-variate distributions. This work is significant as it expands on our existing knowledge of KL divergence by providing precise formulations for over sixty univariate distributions. The authors also ensured the accuracy of these expressions through numerical checks, which adds a layer of validation to their findings. The derived expressions incorporate various special functions, highlighting the mathematical complexity and richness of the topic. This research contributes to a deeper understanding of KL divergence and its applications in statistical analysis and modeling.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592849/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exact Expressions for Kullback-Leibler Divergence for Univariate Distributions.\",\"authors\":\"Victor Nawa, Saralees Nadarajah\",\"doi\":\"10.3390/e26110959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Kullback-Leibler divergence (KL divergence) is a statistical measure that quantifies the difference between two probability distributions. Specifically, it assesses the amount of information that is lost when one distribution is used to approximate another. This concept is crucial in various fields, including information theory, statistics, and machine learning, as it helps in understanding how well a model represents the underlying data. In a recent study by Nawa and Nadarajah, a comprehensive collection of exact expressions for the Kullback-Leibler divergence was derived for both multivariate and matrix-variate distributions. This work is significant as it expands on our existing knowledge of KL divergence by providing precise formulations for over sixty univariate distributions. The authors also ensured the accuracy of these expressions through numerical checks, which adds a layer of validation to their findings. The derived expressions incorporate various special functions, highlighting the mathematical complexity and richness of the topic. This research contributes to a deeper understanding of KL divergence and its applications in statistical analysis and modeling.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110959\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110959","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Exact Expressions for Kullback-Leibler Divergence for Univariate Distributions.
The Kullback-Leibler divergence (KL divergence) is a statistical measure that quantifies the difference between two probability distributions. Specifically, it assesses the amount of information that is lost when one distribution is used to approximate another. This concept is crucial in various fields, including information theory, statistics, and machine learning, as it helps in understanding how well a model represents the underlying data. In a recent study by Nawa and Nadarajah, a comprehensive collection of exact expressions for the Kullback-Leibler divergence was derived for both multivariate and matrix-variate distributions. This work is significant as it expands on our existing knowledge of KL divergence by providing precise formulations for over sixty univariate distributions. The authors also ensured the accuracy of these expressions through numerical checks, which adds a layer of validation to their findings. The derived expressions incorporate various special functions, highlighting the mathematical complexity and richness of the topic. This research contributes to a deeper understanding of KL divergence and its applications in statistical analysis and modeling.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.