{"title":"使用高斯混合模型对金融对数收益率进行基于熵的波动性分析。","authors":"Luca Scrucca","doi":"10.3390/e26110907","DOIUrl":null,"url":null,"abstract":"<p><p>Volatility in financial markets refers to the variation in asset prices over time. High volatility indicates increased risk, making its evaluation essential for effective risk management. Various methods are used to assess volatility, with the standard deviation of log-returns being a common approach. However, this implicitly assumes that log-returns follow a Gaussian distribution, which is not always valid. In this paper, we explore the use of (differential) entropy to evaluate the volatility of financial log-returns. Estimation of entropy is obtained using a Gaussian mixture model to approximate the underlying density of log-returns. Following this modeling approach, popular risk measures such as Value at Risk and Expected Shortfall can also be computed. By integrating Gaussian mixture modeling and entropy into the analysis of log-returns, we aim to provide a more accurate and robust framework for assessing financial volatility and risk measures.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Entropy-Based Volatility Analysis of Financial Log-Returns Using Gaussian Mixture Models.\",\"authors\":\"Luca Scrucca\",\"doi\":\"10.3390/e26110907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volatility in financial markets refers to the variation in asset prices over time. High volatility indicates increased risk, making its evaluation essential for effective risk management. Various methods are used to assess volatility, with the standard deviation of log-returns being a common approach. However, this implicitly assumes that log-returns follow a Gaussian distribution, which is not always valid. In this paper, we explore the use of (differential) entropy to evaluate the volatility of financial log-returns. Estimation of entropy is obtained using a Gaussian mixture model to approximate the underlying density of log-returns. Following this modeling approach, popular risk measures such as Value at Risk and Expected Shortfall can also be computed. By integrating Gaussian mixture modeling and entropy into the analysis of log-returns, we aim to provide a more accurate and robust framework for assessing financial volatility and risk measures.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110907\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110907","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Entropy-Based Volatility Analysis of Financial Log-Returns Using Gaussian Mixture Models.
Volatility in financial markets refers to the variation in asset prices over time. High volatility indicates increased risk, making its evaluation essential for effective risk management. Various methods are used to assess volatility, with the standard deviation of log-returns being a common approach. However, this implicitly assumes that log-returns follow a Gaussian distribution, which is not always valid. In this paper, we explore the use of (differential) entropy to evaluate the volatility of financial log-returns. Estimation of entropy is obtained using a Gaussian mixture model to approximate the underlying density of log-returns. Following this modeling approach, popular risk measures such as Value at Risk and Expected Shortfall can also be computed. By integrating Gaussian mixture modeling and entropy into the analysis of log-returns, we aim to provide a more accurate and robust framework for assessing financial volatility and risk measures.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.