通过机器学习和放射组学分析,利用 CT 扫描预测肝细胞癌手术后肝功能衰竭的术前情况。

IF 3.5 2区 医学 Q2 ONCOLOGY
Ejso Pub Date : 2024-11-15 DOI:10.1016/j.ejso.2024.109462
Simone Famularo, Cesare Maino, Flavio Milana, Francesco Ardito, Gianluca Rompianesi, Cristina Ciulli, Simone Conci, Anna Gallotti, Giuliano La Barba, Maurizio Romano, Michela De Angelis, Stefan Patauner, Camilla Penzo, Agostino Maria De Rose, Jacques Marescaux, Michele Diana, Davide Ippolito, Antonio Frena, Luigi Boccia, Giacomo Zanus, Giorgio Ercolani, Marcello Maestri, Gian Luca Grazi, Andrea Ruzzenente, Fabrizio Romano, Roberto Ivan Troisi, Felice Giuliante, Matteo Donadon, Guido Torzilli
{"title":"通过机器学习和放射组学分析,利用 CT 扫描预测肝细胞癌手术后肝功能衰竭的术前情况。","authors":"Simone Famularo, Cesare Maino, Flavio Milana, Francesco Ardito, Gianluca Rompianesi, Cristina Ciulli, Simone Conci, Anna Gallotti, Giuliano La Barba, Maurizio Romano, Michela De Angelis, Stefan Patauner, Camilla Penzo, Agostino Maria De Rose, Jacques Marescaux, Michele Diana, Davide Ippolito, Antonio Frena, Luigi Boccia, Giacomo Zanus, Giorgio Ercolani, Marcello Maestri, Gian Luca Grazi, Andrea Ruzzenente, Fabrizio Romano, Roberto Ivan Troisi, Felice Giuliante, Matteo Donadon, Guido Torzilli","doi":"10.1016/j.ejso.2024.109462","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms.</p><p><strong>Materials and methods: </strong>Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM).</p><p><strong>Results: </strong>Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %).</p><p><strong>Conclusions: </strong>The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.</p>","PeriodicalId":11522,"journal":{"name":"Ejso","volume":" ","pages":"109462"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.\",\"authors\":\"Simone Famularo, Cesare Maino, Flavio Milana, Francesco Ardito, Gianluca Rompianesi, Cristina Ciulli, Simone Conci, Anna Gallotti, Giuliano La Barba, Maurizio Romano, Michela De Angelis, Stefan Patauner, Camilla Penzo, Agostino Maria De Rose, Jacques Marescaux, Michele Diana, Davide Ippolito, Antonio Frena, Luigi Boccia, Giacomo Zanus, Giorgio Ercolani, Marcello Maestri, Gian Luca Grazi, Andrea Ruzzenente, Fabrizio Romano, Roberto Ivan Troisi, Felice Giuliante, Matteo Donadon, Guido Torzilli\",\"doi\":\"10.1016/j.ejso.2024.109462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms.</p><p><strong>Materials and methods: </strong>Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM).</p><p><strong>Results: </strong>Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %).</p><p><strong>Conclusions: </strong>The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.</p>\",\"PeriodicalId\":11522,\"journal\":{\"name\":\"Ejso\",\"volume\":\" \",\"pages\":\"109462\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ejso\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejso.2024.109462\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ejso","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejso.2024.109462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:目前还没有任何工具可以在术前预测HCC患者肝切除术后肝功能衰竭(PHLF)的风险。该研究旨在通过机器学习算法,利用放射组学和临床数据预测术前 PHLF 的发生:2008年至2022年期间,在13个意大利中心回顾性收集了临床数据和三期CT扫描结果。提取非肿瘤肝区的放射组学特征。数据分为训练集(70%)和测试集(30%)。在训练集中进行了超采样(ADASYN)。随机森林(RF)、极梯度提升(XGB)和支持向量机(SVM)模型被用于预测 PHLF。在测试集中对指标进行了最终评估。最佳模型被纳入平均集合模型(AEM):收集了五百张连续的术前 CT 扫描图像和相关临床数据。其中,17 例(3.4%)出现 PHLF。每位患者提取了 216 个放射组学特征。PCA 选择了 19 个维度,解释了超过 75% 的方差。相关临床变量包括:大小、大血管侵犯、肝硬化、主要切除术和 MELD 评分。数据分为训练队列(70%,n = 351)和测试队列(30%,n = 149)。RF 模型的 AUC = 89.1 %(Spec.)XGB 模型的 AUC = 89.4 %(规格 = 100 %,灵敏度 = 20.0 %,准确度 = 97.3 %,PPV = 20 %,NPV = 97.3 %)。AEM结合了XGB和RF模型,获得的AUC = 90.1 %(规格 = 89.5 %,感度 = 80.0 %,准确度 = 89.2 %,PPV = 21.0 %,NPV = 99.2 %):AEM在鉴别和真阳性识别方面取得了最佳结果。结论:AEM在鉴别和真阳性识别方面取得了最佳结果,可更好地确定患者是否适合进行肝脏切除术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

Introduction: No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms.

Materials and methods: Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM).

Results: Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %).

Conclusions: The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ejso
Ejso 医学-外科
CiteScore
6.40
自引率
2.60%
发文量
1148
审稿时长
41 days
期刊介绍: JSO - European Journal of Surgical Oncology ("the Journal of Cancer Surgery") is the Official Journal of the European Society of Surgical Oncology and BASO ~ the Association for Cancer Surgery. The EJSO aims to advance surgical oncology research and practice through the publication of original research articles, review articles, editorials, debates and correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信