{"title":"自由能量原理下的突触学习贝叶斯力学","authors":"Chang Sub Kim","doi":"10.3390/e26110984","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is a biological system comprising nerve cells and orchestrates its embodied agent's perception, behavior, and learning in dynamic environments. The free-energy principle (FEP) advocated by Karl Friston explicates the local, recurrent, and self-supervised cognitive dynamics of the brain's higher-order functions. In this study, we continue to refine the FEP through a physics-guided formulation; specifically, we apply our theory to synaptic learning by considering it an inference problem under the FEP and derive the governing equations, called Bayesian mechanics. Our study uncovers how the brain infers weight changes and postsynaptic activity, conditioned on the presynaptic input, by deploying generative models of the likelihood and prior belief. Consequently, we exemplify the synaptic efficacy in the brain with a simple model; in particular, we illustrate that the brain organizes an optimal trajectory in neural phase space during synaptic learning in continuous time, which variationally minimizes synaptic surprisal.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592945/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Mechanics of Synaptic Learning Under the Free-Energy Principle.\",\"authors\":\"Chang Sub Kim\",\"doi\":\"10.3390/e26110984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain is a biological system comprising nerve cells and orchestrates its embodied agent's perception, behavior, and learning in dynamic environments. The free-energy principle (FEP) advocated by Karl Friston explicates the local, recurrent, and self-supervised cognitive dynamics of the brain's higher-order functions. In this study, we continue to refine the FEP through a physics-guided formulation; specifically, we apply our theory to synaptic learning by considering it an inference problem under the FEP and derive the governing equations, called Bayesian mechanics. Our study uncovers how the brain infers weight changes and postsynaptic activity, conditioned on the presynaptic input, by deploying generative models of the likelihood and prior belief. Consequently, we exemplify the synaptic efficacy in the brain with a simple model; in particular, we illustrate that the brain organizes an optimal trajectory in neural phase space during synaptic learning in continuous time, which variationally minimizes synaptic surprisal.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592945/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110984\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110984","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian Mechanics of Synaptic Learning Under the Free-Energy Principle.
The brain is a biological system comprising nerve cells and orchestrates its embodied agent's perception, behavior, and learning in dynamic environments. The free-energy principle (FEP) advocated by Karl Friston explicates the local, recurrent, and self-supervised cognitive dynamics of the brain's higher-order functions. In this study, we continue to refine the FEP through a physics-guided formulation; specifically, we apply our theory to synaptic learning by considering it an inference problem under the FEP and derive the governing equations, called Bayesian mechanics. Our study uncovers how the brain infers weight changes and postsynaptic activity, conditioned on the presynaptic input, by deploying generative models of the likelihood and prior belief. Consequently, we exemplify the synaptic efficacy in the brain with a simple model; in particular, we illustrate that the brain organizes an optimal trajectory in neural phase space during synaptic learning in continuous time, which variationally minimizes synaptic surprisal.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.