论量子力学中的负结果实验。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-11-07 DOI:10.3390/e26110958
Kenichi Konishi
{"title":"论量子力学中的负结果实验。","authors":"Kenichi Konishi","doi":"10.3390/e26110958","DOIUrl":null,"url":null,"abstract":"<p><p>We comment on the so-called negative result experiments (also known as null measurements, interaction-free measurements, and so on) in quantum mechanics (QM), in the light of the new general understanding of the quantum-measurement processes, proposed recently. All experiments of this kind (null measurements) can be understood as improper measurements with an intentionally biased detector set up, which introduces exclusion or selection of certain events. The prediction on the state of a microscopic system under study based on a null measurement is sometimes dramatically described as \"wave-function collapse without any microsystem-detector interactions\". Though certainly correct, such a prediction is just a consequence of the standard QM laws, not different from the situation in the so-called state-preparation procedure. Another closely related concept is the (first-class or) repeatable measurements. The verification of the prediction made by a null measurement requires eventually a standard unbiased measurement involving the microsystem-macroscopic detector interactions, which are nonadiabatic, irreversible processes of signal amplification.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592586/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the Negative Result Experiments in Quantum Mechanics.\",\"authors\":\"Kenichi Konishi\",\"doi\":\"10.3390/e26110958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We comment on the so-called negative result experiments (also known as null measurements, interaction-free measurements, and so on) in quantum mechanics (QM), in the light of the new general understanding of the quantum-measurement processes, proposed recently. All experiments of this kind (null measurements) can be understood as improper measurements with an intentionally biased detector set up, which introduces exclusion or selection of certain events. The prediction on the state of a microscopic system under study based on a null measurement is sometimes dramatically described as \\\"wave-function collapse without any microsystem-detector interactions\\\". Though certainly correct, such a prediction is just a consequence of the standard QM laws, not different from the situation in the so-called state-preparation procedure. Another closely related concept is the (first-class or) repeatable measurements. The verification of the prediction made by a null measurement requires eventually a standard unbiased measurement involving the microsystem-macroscopic detector interactions, which are nonadiabatic, irreversible processes of signal amplification.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26110958\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110958","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据最近提出的对量子测量过程的新的一般理解,我们对量子力学(QM)中所谓的负结果实验(也称为空测量、无相互作用测量等)进行了评论。所有这类实验(空测量)都可以理解为故意设置有偏差的探测器进行的不恰当测量,它引入了对某些事件的排除或选择。基于空测量对所研究微观系统状态的预测,有时被戏剧性地描述为 "没有任何微观系统-探测器相互作用的波函数坍缩"。尽管这种预言肯定是正确的,但它只是标准量子力学定律的结果,与所谓状态准备过程中的情况并无不同。另一个密切相关的概念是(一流或)可重复测量。要验证空测量的预言,最终需要进行标准的无偏测量,其中涉及微系统与宏观探测器的相互作用,这是一个非绝热、不可逆的信号放大过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Negative Result Experiments in Quantum Mechanics.

We comment on the so-called negative result experiments (also known as null measurements, interaction-free measurements, and so on) in quantum mechanics (QM), in the light of the new general understanding of the quantum-measurement processes, proposed recently. All experiments of this kind (null measurements) can be understood as improper measurements with an intentionally biased detector set up, which introduces exclusion or selection of certain events. The prediction on the state of a microscopic system under study based on a null measurement is sometimes dramatically described as "wave-function collapse without any microsystem-detector interactions". Though certainly correct, such a prediction is just a consequence of the standard QM laws, not different from the situation in the so-called state-preparation procedure. Another closely related concept is the (first-class or) repeatable measurements. The verification of the prediction made by a null measurement requires eventually a standard unbiased measurement involving the microsystem-macroscopic detector interactions, which are nonadiabatic, irreversible processes of signal amplification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信