A Katherine Tan, Aurelie Henry, Nicolas Goffart, Christophe Poulet, Jacqueline A Sluijs, Elly M Hol, Vincent Bours, Pierre A Robe
{"title":"第二类转活体(CIITA)对胶质母细胞瘤的非免疫介导、与 p27 相关的生长抑制作用。","authors":"A Katherine Tan, Aurelie Henry, Nicolas Goffart, Christophe Poulet, Jacqueline A Sluijs, Elly M Hol, Vincent Bours, Pierre A Robe","doi":"10.3390/cells13221883","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous works have shown that the expression of Class-II-Transactivator (CIITA) in tumor cells reduces the growth of glioblastoma (GB) in animal models, but immune effects cannot solely explain this. Here, we searched for immune-independent effects of CIITA on the proliferation of GB.</p><p><strong>Methods: </strong>Murine GL261 and human U87, GM2 and GM3 malignant glioma cells were transfected with CIITA. NSG (immunodeficient) and nude (athymic) mice were injected in the striatum with GL261-wildtype (-WT) and -CIITA, and tumor growth was assessed by immunohistology and luminescence reporter genes. Clonogenic, sphere-formation, and 3D Matrigel-based in vitro growth assays were performed to compare the growth of WT versus CIITA-expressing murine and human cells. Bulk RNA sequencing and RT<sup>2</sup> qRT-PCR profiler arrays were performed on these four cell lines to assess RNA expression changes following CIITA transfection. Western blot analysis on several proliferation-associated proteins was performed.</p><p><strong>Results: </strong>The intracerebral growth of murine GL261-CIITA cells was drastically reduced both in immunodeficient and athymic mice. Tumor growth was reduced in vitro in three of the four cell types. RNA sequencing and RT<sup>2</sup> profiler array experiments revealed a modulation of gene expression in the PI3-Akt, MAPK- and cell-cycle regulation pathways following CIITA overexpression. Western blot analysis showed an upregulation of p27 in the growth-inhibited cells following this treatment. PDGFR-beta was downregulated in all cells. We did not find consistent regulation of other proteins involved in GB proliferation.</p><p><strong>Conclusions: </strong>Proliferation is drastically reduced by CIITA in GB, both in vivo and in vitro, notably in association with p27-mediated inhibition of cell-cycle pathways.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 22","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Immune-Mediated, p27-Associated, Growth Inhibition of Glioblastoma by Class-II-Transactivator (CIITA).\",\"authors\":\"A Katherine Tan, Aurelie Henry, Nicolas Goffart, Christophe Poulet, Jacqueline A Sluijs, Elly M Hol, Vincent Bours, Pierre A Robe\",\"doi\":\"10.3390/cells13221883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous works have shown that the expression of Class-II-Transactivator (CIITA) in tumor cells reduces the growth of glioblastoma (GB) in animal models, but immune effects cannot solely explain this. Here, we searched for immune-independent effects of CIITA on the proliferation of GB.</p><p><strong>Methods: </strong>Murine GL261 and human U87, GM2 and GM3 malignant glioma cells were transfected with CIITA. NSG (immunodeficient) and nude (athymic) mice were injected in the striatum with GL261-wildtype (-WT) and -CIITA, and tumor growth was assessed by immunohistology and luminescence reporter genes. Clonogenic, sphere-formation, and 3D Matrigel-based in vitro growth assays were performed to compare the growth of WT versus CIITA-expressing murine and human cells. Bulk RNA sequencing and RT<sup>2</sup> qRT-PCR profiler arrays were performed on these four cell lines to assess RNA expression changes following CIITA transfection. Western blot analysis on several proliferation-associated proteins was performed.</p><p><strong>Results: </strong>The intracerebral growth of murine GL261-CIITA cells was drastically reduced both in immunodeficient and athymic mice. Tumor growth was reduced in vitro in three of the four cell types. RNA sequencing and RT<sup>2</sup> profiler array experiments revealed a modulation of gene expression in the PI3-Akt, MAPK- and cell-cycle regulation pathways following CIITA overexpression. Western blot analysis showed an upregulation of p27 in the growth-inhibited cells following this treatment. PDGFR-beta was downregulated in all cells. We did not find consistent regulation of other proteins involved in GB proliferation.</p><p><strong>Conclusions: </strong>Proliferation is drastically reduced by CIITA in GB, both in vivo and in vitro, notably in association with p27-mediated inhibition of cell-cycle pathways.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 22\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13221883\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13221883","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Non-Immune-Mediated, p27-Associated, Growth Inhibition of Glioblastoma by Class-II-Transactivator (CIITA).
Background: Previous works have shown that the expression of Class-II-Transactivator (CIITA) in tumor cells reduces the growth of glioblastoma (GB) in animal models, but immune effects cannot solely explain this. Here, we searched for immune-independent effects of CIITA on the proliferation of GB.
Methods: Murine GL261 and human U87, GM2 and GM3 malignant glioma cells were transfected with CIITA. NSG (immunodeficient) and nude (athymic) mice were injected in the striatum with GL261-wildtype (-WT) and -CIITA, and tumor growth was assessed by immunohistology and luminescence reporter genes. Clonogenic, sphere-formation, and 3D Matrigel-based in vitro growth assays were performed to compare the growth of WT versus CIITA-expressing murine and human cells. Bulk RNA sequencing and RT2 qRT-PCR profiler arrays were performed on these four cell lines to assess RNA expression changes following CIITA transfection. Western blot analysis on several proliferation-associated proteins was performed.
Results: The intracerebral growth of murine GL261-CIITA cells was drastically reduced both in immunodeficient and athymic mice. Tumor growth was reduced in vitro in three of the four cell types. RNA sequencing and RT2 profiler array experiments revealed a modulation of gene expression in the PI3-Akt, MAPK- and cell-cycle regulation pathways following CIITA overexpression. Western blot analysis showed an upregulation of p27 in the growth-inhibited cells following this treatment. PDGFR-beta was downregulated in all cells. We did not find consistent regulation of other proteins involved in GB proliferation.
Conclusions: Proliferation is drastically reduced by CIITA in GB, both in vivo and in vitro, notably in association with p27-mediated inhibition of cell-cycle pathways.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.