{"title":"基于血清 microRNAs 的非侵入性筛查方法的开发,用于量化肝脏脂肪变性的比例。","authors":"Polina Soluyanova, Guillermo Quintás, Álvaro Pérez-Rubio, Iván Rienda, Erika Moro, Marcel van Herwijnen, Marcha Verheijen, Florian Caiment, Judith Pérez-Rojas, Ramón Trullenque-Juan, Eugenia Pareja, Ramiro Jover","doi":"10.3390/biom14111423","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is often asymptomatic and underdiagnosed; consequently, there is a demand for simple, non-invasive diagnostic tools. In this study, we developed a method to quantify liver steatosis based on miRNAs, present in liver and serum, that correlate with liver fat. The miRNAs were analyzed by miRNAseq in liver samples from two cohorts of patients with a precise quantification of liver steatosis. Common miRNAs showing correlation with liver steatosis were validated by RT-qPCR in paired liver and serum samples. Multivariate models were built using partial least squares (PLS) regression to predict the percentage of liver steatosis from serum miRNA levels. Leave-one-out cross validation and external validation were used for model selection and to estimate predictive performance. The miRNAseq results disclosed (a) 144 miRNAs correlating with triglycerides in a set of liver biobank samples (<i>n</i> = 20); and (b) 124 and 102 miRNAs correlating with steatosis by biopsy digital image and MRI analyses, respectively, in liver samples from morbidly obese patients (<i>n</i> = 24). However, only 35 miRNAs were common in both sets of samples. RT-qPCR allowed to validate the correlation of 10 miRNAs in paired liver and serum samples. The development of PLS models to quantitatively predict steatosis demonstrated that the combination of serum miR-145-3p, 122-5p, 143-3p, 500a-5p, and 182-5p provided the lowest root mean square error of cross validation (RMSECV = 1.1, <i>p</i>-value = 0.005). External validation of this model with a cohort of mixed MASLD patients (<i>n</i> = 25) showed a root mean squared error of prediction (RMSEP) of 5.3. In conclusion, it is possible to predict the percentage of hepatic steatosis with a low error rate by quantifying the serum level of five miRNAs using a cost-effective and easy-to-implement RT-qPCR method.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592063/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis.\",\"authors\":\"Polina Soluyanova, Guillermo Quintás, Álvaro Pérez-Rubio, Iván Rienda, Erika Moro, Marcel van Herwijnen, Marcha Verheijen, Florian Caiment, Judith Pérez-Rojas, Ramón Trullenque-Juan, Eugenia Pareja, Ramiro Jover\",\"doi\":\"10.3390/biom14111423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is often asymptomatic and underdiagnosed; consequently, there is a demand for simple, non-invasive diagnostic tools. In this study, we developed a method to quantify liver steatosis based on miRNAs, present in liver and serum, that correlate with liver fat. The miRNAs were analyzed by miRNAseq in liver samples from two cohorts of patients with a precise quantification of liver steatosis. Common miRNAs showing correlation with liver steatosis were validated by RT-qPCR in paired liver and serum samples. Multivariate models were built using partial least squares (PLS) regression to predict the percentage of liver steatosis from serum miRNA levels. Leave-one-out cross validation and external validation were used for model selection and to estimate predictive performance. The miRNAseq results disclosed (a) 144 miRNAs correlating with triglycerides in a set of liver biobank samples (<i>n</i> = 20); and (b) 124 and 102 miRNAs correlating with steatosis by biopsy digital image and MRI analyses, respectively, in liver samples from morbidly obese patients (<i>n</i> = 24). However, only 35 miRNAs were common in both sets of samples. RT-qPCR allowed to validate the correlation of 10 miRNAs in paired liver and serum samples. The development of PLS models to quantitatively predict steatosis demonstrated that the combination of serum miR-145-3p, 122-5p, 143-3p, 500a-5p, and 182-5p provided the lowest root mean square error of cross validation (RMSECV = 1.1, <i>p</i>-value = 0.005). External validation of this model with a cohort of mixed MASLD patients (<i>n</i> = 25) showed a root mean squared error of prediction (RMSEP) of 5.3. In conclusion, it is possible to predict the percentage of hepatic steatosis with a low error rate by quantifying the serum level of five miRNAs using a cost-effective and easy-to-implement RT-qPCR method.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111423\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111423","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is often asymptomatic and underdiagnosed; consequently, there is a demand for simple, non-invasive diagnostic tools. In this study, we developed a method to quantify liver steatosis based on miRNAs, present in liver and serum, that correlate with liver fat. The miRNAs were analyzed by miRNAseq in liver samples from two cohorts of patients with a precise quantification of liver steatosis. Common miRNAs showing correlation with liver steatosis were validated by RT-qPCR in paired liver and serum samples. Multivariate models were built using partial least squares (PLS) regression to predict the percentage of liver steatosis from serum miRNA levels. Leave-one-out cross validation and external validation were used for model selection and to estimate predictive performance. The miRNAseq results disclosed (a) 144 miRNAs correlating with triglycerides in a set of liver biobank samples (n = 20); and (b) 124 and 102 miRNAs correlating with steatosis by biopsy digital image and MRI analyses, respectively, in liver samples from morbidly obese patients (n = 24). However, only 35 miRNAs were common in both sets of samples. RT-qPCR allowed to validate the correlation of 10 miRNAs in paired liver and serum samples. The development of PLS models to quantitatively predict steatosis demonstrated that the combination of serum miR-145-3p, 122-5p, 143-3p, 500a-5p, and 182-5p provided the lowest root mean square error of cross validation (RMSECV = 1.1, p-value = 0.005). External validation of this model with a cohort of mixed MASLD patients (n = 25) showed a root mean squared error of prediction (RMSEP) of 5.3. In conclusion, it is possible to predict the percentage of hepatic steatosis with a low error rate by quantifying the serum level of five miRNAs using a cost-effective and easy-to-implement RT-qPCR method.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.