{"title":"苯甲酸甲酯通过线粒体功能障碍影响猪卵母细胞成熟","authors":"Huimei Huang, Chuman Huang, Yinghua Li, Xingwei Liang, Namhyung Kim, Yongnan Xu","doi":"10.3390/biom14111466","DOIUrl":null,"url":null,"abstract":"<p><p>Parabens are widely used in various industries, which are including chemical, pharmaceutical, food, cosmetic, and plastic processing industries. Among these, methyl paraben (MP) serves as an antimicrobial preservative in processed foods, pharmaceuticals, and cosmetics, and it is particularly detected in baby care products. Studies indicate that MP functions as an endocrine-disrupting compound with estrogenic properties, negatively affecting mitochondrial bioenergetics and antioxidant activity in testicular germ cells. However, limited information exists regarding studies on the effects of MP in oocytes. The aim of this study was to investigate the specific mechanism and the toxic effects of MP during oocyte maturation cultured in vitro using a porcine oocyte model. The results indicated that MP (50 μM) inhibited oocyte expansion, significantly reducing the expression of expansion-related genes <i>MAPK1</i> and <i>ERK1</i>, and decreased the first polar body extrusion significantly as well. ATP levels decreased, reactive oxygen species (ROS) levels remained unchanged, and glutathione (GSH) levels decreased significantly, resulting in an elevated ROS/GSH ratio. The expression of antioxidant genes <i>SOD1</i> and <i>GPX</i> was significantly decreased. Additionally, a significant decrease in levels of mitochondrial production and biosynthesis protein PGC1α+β, whereas levels of antioxidant-related protein Nrf2 and related gene expression were significantly increased. Autophagy protein LC3B and gene expression significantly decreased, and apoptosis assay indicated a significant increase in levels of caspase3 protein and apoptosis-related genes. These results demonstrated the negative effect of MP on oocyte maturation. In conclusion, our findings indicate that MP disrupts redox balance and induces mitochondrial dysfunction during meiosis in porcine oocytes, resulting in the inhibition of meiotic progression. The present study reveals the mechanism underlying the effects of methyl para-hydroxybenzoate on oocyte maturation.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methyl Paraben Affects Porcine Oocyte Maturation Through Mitochondrial Dysfunction.\",\"authors\":\"Huimei Huang, Chuman Huang, Yinghua Li, Xingwei Liang, Namhyung Kim, Yongnan Xu\",\"doi\":\"10.3390/biom14111466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parabens are widely used in various industries, which are including chemical, pharmaceutical, food, cosmetic, and plastic processing industries. Among these, methyl paraben (MP) serves as an antimicrobial preservative in processed foods, pharmaceuticals, and cosmetics, and it is particularly detected in baby care products. Studies indicate that MP functions as an endocrine-disrupting compound with estrogenic properties, negatively affecting mitochondrial bioenergetics and antioxidant activity in testicular germ cells. However, limited information exists regarding studies on the effects of MP in oocytes. The aim of this study was to investigate the specific mechanism and the toxic effects of MP during oocyte maturation cultured in vitro using a porcine oocyte model. The results indicated that MP (50 μM) inhibited oocyte expansion, significantly reducing the expression of expansion-related genes <i>MAPK1</i> and <i>ERK1</i>, and decreased the first polar body extrusion significantly as well. ATP levels decreased, reactive oxygen species (ROS) levels remained unchanged, and glutathione (GSH) levels decreased significantly, resulting in an elevated ROS/GSH ratio. The expression of antioxidant genes <i>SOD1</i> and <i>GPX</i> was significantly decreased. Additionally, a significant decrease in levels of mitochondrial production and biosynthesis protein PGC1α+β, whereas levels of antioxidant-related protein Nrf2 and related gene expression were significantly increased. Autophagy protein LC3B and gene expression significantly decreased, and apoptosis assay indicated a significant increase in levels of caspase3 protein and apoptosis-related genes. These results demonstrated the negative effect of MP on oocyte maturation. In conclusion, our findings indicate that MP disrupts redox balance and induces mitochondrial dysfunction during meiosis in porcine oocytes, resulting in the inhibition of meiotic progression. The present study reveals the mechanism underlying the effects of methyl para-hydroxybenzoate on oocyte maturation.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111466\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Methyl Paraben Affects Porcine Oocyte Maturation Through Mitochondrial Dysfunction.
Parabens are widely used in various industries, which are including chemical, pharmaceutical, food, cosmetic, and plastic processing industries. Among these, methyl paraben (MP) serves as an antimicrobial preservative in processed foods, pharmaceuticals, and cosmetics, and it is particularly detected in baby care products. Studies indicate that MP functions as an endocrine-disrupting compound with estrogenic properties, negatively affecting mitochondrial bioenergetics and antioxidant activity in testicular germ cells. However, limited information exists regarding studies on the effects of MP in oocytes. The aim of this study was to investigate the specific mechanism and the toxic effects of MP during oocyte maturation cultured in vitro using a porcine oocyte model. The results indicated that MP (50 μM) inhibited oocyte expansion, significantly reducing the expression of expansion-related genes MAPK1 and ERK1, and decreased the first polar body extrusion significantly as well. ATP levels decreased, reactive oxygen species (ROS) levels remained unchanged, and glutathione (GSH) levels decreased significantly, resulting in an elevated ROS/GSH ratio. The expression of antioxidant genes SOD1 and GPX was significantly decreased. Additionally, a significant decrease in levels of mitochondrial production and biosynthesis protein PGC1α+β, whereas levels of antioxidant-related protein Nrf2 and related gene expression were significantly increased. Autophagy protein LC3B and gene expression significantly decreased, and apoptosis assay indicated a significant increase in levels of caspase3 protein and apoptosis-related genes. These results demonstrated the negative effect of MP on oocyte maturation. In conclusion, our findings indicate that MP disrupts redox balance and induces mitochondrial dysfunction during meiosis in porcine oocytes, resulting in the inhibition of meiotic progression. The present study reveals the mechanism underlying the effects of methyl para-hydroxybenzoate on oocyte maturation.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.