{"title":"超越药理学:脑血管疾病远程缺血调理的生物机制。","authors":"Linhui Qin, Fang Tong, Sijie Li, Changhong Ren","doi":"10.3390/biom14111408","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrovascular diseases (CVDs), comprising predominantly ischemic stroke and chronic cerebral hypoperfusion (CCH), are a significant threat to global health, often leading to disability and mortality. Remote ischemic conditioning (RIC) has emerged as a promising, non-pharmacological strategy to combat CVDs by leveraging the body's innate defense mechanisms. This review delves into the neuroprotective mechanisms of RIC, categorizing its effects during the acute and chronic phases of stroke recovery. It also explores the synergistic potential of RIC when combined with other therapeutic strategies, such as pharmacological treatments and physical exercise. Additionally, this review discusses the pathways through which peripheral transmission can confer central neuroprotection. This review concludes by addressing the challenges regarding and future directions for RIC, emphasizing the need for standardized protocols, biomarker identification, and expanded clinical trials to fully realize its therapeutic potential.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592304/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease.\",\"authors\":\"Linhui Qin, Fang Tong, Sijie Li, Changhong Ren\",\"doi\":\"10.3390/biom14111408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebrovascular diseases (CVDs), comprising predominantly ischemic stroke and chronic cerebral hypoperfusion (CCH), are a significant threat to global health, often leading to disability and mortality. Remote ischemic conditioning (RIC) has emerged as a promising, non-pharmacological strategy to combat CVDs by leveraging the body's innate defense mechanisms. This review delves into the neuroprotective mechanisms of RIC, categorizing its effects during the acute and chronic phases of stroke recovery. It also explores the synergistic potential of RIC when combined with other therapeutic strategies, such as pharmacological treatments and physical exercise. Additionally, this review discusses the pathways through which peripheral transmission can confer central neuroprotection. This review concludes by addressing the challenges regarding and future directions for RIC, emphasizing the need for standardized protocols, biomarker identification, and expanded clinical trials to fully realize its therapeutic potential.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592304/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111408\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111408","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease.
Cerebrovascular diseases (CVDs), comprising predominantly ischemic stroke and chronic cerebral hypoperfusion (CCH), are a significant threat to global health, often leading to disability and mortality. Remote ischemic conditioning (RIC) has emerged as a promising, non-pharmacological strategy to combat CVDs by leveraging the body's innate defense mechanisms. This review delves into the neuroprotective mechanisms of RIC, categorizing its effects during the acute and chronic phases of stroke recovery. It also explores the synergistic potential of RIC when combined with other therapeutic strategies, such as pharmacological treatments and physical exercise. Additionally, this review discusses the pathways through which peripheral transmission can confer central neuroprotection. This review concludes by addressing the challenges regarding and future directions for RIC, emphasizing the need for standardized protocols, biomarker identification, and expanded clinical trials to fully realize its therapeutic potential.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.