Muzzamil Aziz, Ioana Popa, Amjad Zia, Andreas Fischer, Sabih Ahmed Khan, Amirreza Fazely Hamedani, Abdul R Asif
{"title":"KnowVID-19:基于知识的系统,从在线医学资料库中提取有针对性的 COVID-19 信息。","authors":"Muzzamil Aziz, Ioana Popa, Amjad Zia, Andreas Fischer, Sabih Ahmed Khan, Amirreza Fazely Hamedani, Abdul R Asif","doi":"10.3390/biom14111411","DOIUrl":null,"url":null,"abstract":"<p><p>We present KnowVID-19, a knowledge-based system that assists medical researchers and scientists in extracting targeted information quickly and efficiently from online medical literature repositories, such as PubMed, PubMed Central, and other biomedical sources. The system utilizes various open-source machine learning tools, such as GROBID, S2ORC, and BioC to streamline the processes of data extraction and data mining. Central to the functionality of KnowVID-19 is its keyword-based text classification process, which plays a pivotal role in organizing and categorizing the extracted information. By employing machine learning techniques for keyword extraction-specifically RAKE, YAKE, and KeyBERT-KnowVID-19 systematically categorizes publication data into distinct topics and subtopics. This topic structuring enhances the system's ability to match user queries with relevant research, improving both the accuracy and efficiency of the search results. In addition, KnowVID-19 leverages the NetworkX Python library to construct networks of the most relevant terms within publications. These networks are then visualized using Cytoscape software, providing a graphical representation of the relationships between key terms. This network visualization allows researchers to easily track emerging trends and developments related to COVID-19, long COVID, and associated topics, facilitating more informed and user-centered exploration of the scientific literature. KnowVID-19 also provides an interactive web application with an intuitive, user-centered interface. This platform supports seamless keyword searching and filtering, as well as a visual network of term associations to help users quickly identify emerging research trends. The responsive design and network visualization enables efficient navigation and access to targeted COVID-19 literature, enhancing both the user experience and the accuracy of data-driven insights.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592241/pdf/","citationCount":"0","resultStr":"{\"title\":\"KnowVID-19: A Knowledge-Based System to Extract Targeted COVID-19 Information from Online Medical Repositories.\",\"authors\":\"Muzzamil Aziz, Ioana Popa, Amjad Zia, Andreas Fischer, Sabih Ahmed Khan, Amirreza Fazely Hamedani, Abdul R Asif\",\"doi\":\"10.3390/biom14111411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present KnowVID-19, a knowledge-based system that assists medical researchers and scientists in extracting targeted information quickly and efficiently from online medical literature repositories, such as PubMed, PubMed Central, and other biomedical sources. The system utilizes various open-source machine learning tools, such as GROBID, S2ORC, and BioC to streamline the processes of data extraction and data mining. Central to the functionality of KnowVID-19 is its keyword-based text classification process, which plays a pivotal role in organizing and categorizing the extracted information. By employing machine learning techniques for keyword extraction-specifically RAKE, YAKE, and KeyBERT-KnowVID-19 systematically categorizes publication data into distinct topics and subtopics. This topic structuring enhances the system's ability to match user queries with relevant research, improving both the accuracy and efficiency of the search results. In addition, KnowVID-19 leverages the NetworkX Python library to construct networks of the most relevant terms within publications. These networks are then visualized using Cytoscape software, providing a graphical representation of the relationships between key terms. This network visualization allows researchers to easily track emerging trends and developments related to COVID-19, long COVID, and associated topics, facilitating more informed and user-centered exploration of the scientific literature. KnowVID-19 also provides an interactive web application with an intuitive, user-centered interface. This platform supports seamless keyword searching and filtering, as well as a visual network of term associations to help users quickly identify emerging research trends. The responsive design and network visualization enables efficient navigation and access to targeted COVID-19 literature, enhancing both the user experience and the accuracy of data-driven insights.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111411\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111411","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
KnowVID-19: A Knowledge-Based System to Extract Targeted COVID-19 Information from Online Medical Repositories.
We present KnowVID-19, a knowledge-based system that assists medical researchers and scientists in extracting targeted information quickly and efficiently from online medical literature repositories, such as PubMed, PubMed Central, and other biomedical sources. The system utilizes various open-source machine learning tools, such as GROBID, S2ORC, and BioC to streamline the processes of data extraction and data mining. Central to the functionality of KnowVID-19 is its keyword-based text classification process, which plays a pivotal role in organizing and categorizing the extracted information. By employing machine learning techniques for keyword extraction-specifically RAKE, YAKE, and KeyBERT-KnowVID-19 systematically categorizes publication data into distinct topics and subtopics. This topic structuring enhances the system's ability to match user queries with relevant research, improving both the accuracy and efficiency of the search results. In addition, KnowVID-19 leverages the NetworkX Python library to construct networks of the most relevant terms within publications. These networks are then visualized using Cytoscape software, providing a graphical representation of the relationships between key terms. This network visualization allows researchers to easily track emerging trends and developments related to COVID-19, long COVID, and associated topics, facilitating more informed and user-centered exploration of the scientific literature. KnowVID-19 also provides an interactive web application with an intuitive, user-centered interface. This platform supports seamless keyword searching and filtering, as well as a visual network of term associations to help users quickly identify emerging research trends. The responsive design and network visualization enables efficient navigation and access to targeted COVID-19 literature, enhancing both the user experience and the accuracy of data-driven insights.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.