{"title":"先天性免疫细胞中的质粒:从花生四烯酸信号转导到铁变态反应","authors":"Jesús Balsinde, María A Balboa","doi":"10.3390/biom14111461","DOIUrl":null,"url":null,"abstract":"<p><p>Polyunsaturated fatty acids such as arachidonic acid are indispensable components of innate immune signaling. Plasmalogens are glycerophospholipids with a vinyl ether bond in the sn-1 position of the glycerol backbone instead of the more common sn-1 ester bond present in \"classical\" glycerophospholipids. This kind of phospholipid is particularly rich in polyunsaturated fatty acids, especially arachidonic acid. In addition to or independently of the role of plasmalogens as major providers of free arachidonic acid for eicosanoid synthesis, plasmalogens also perform a varied number of functions. Membrane plasmalogen levels may determine parameters of the plasma membrane, such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages. Also, plasmalogens may be instrumental for the execution of ferroptosis. This is a nonapoptotic form of cell death that is associated with oxidative stress. This review discusses recent data suggesting that, beyond their involvement in the cellular metabolism of arachidonic acid, the cells maintain stable pools of plasmalogens rich in polyunsaturated fatty acids for executing specific responses.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592020/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis.\",\"authors\":\"Jesús Balsinde, María A Balboa\",\"doi\":\"10.3390/biom14111461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyunsaturated fatty acids such as arachidonic acid are indispensable components of innate immune signaling. Plasmalogens are glycerophospholipids with a vinyl ether bond in the sn-1 position of the glycerol backbone instead of the more common sn-1 ester bond present in \\\"classical\\\" glycerophospholipids. This kind of phospholipid is particularly rich in polyunsaturated fatty acids, especially arachidonic acid. In addition to or independently of the role of plasmalogens as major providers of free arachidonic acid for eicosanoid synthesis, plasmalogens also perform a varied number of functions. Membrane plasmalogen levels may determine parameters of the plasma membrane, such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages. Also, plasmalogens may be instrumental for the execution of ferroptosis. This is a nonapoptotic form of cell death that is associated with oxidative stress. This review discusses recent data suggesting that, beyond their involvement in the cellular metabolism of arachidonic acid, the cells maintain stable pools of plasmalogens rich in polyunsaturated fatty acids for executing specific responses.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111461\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111461","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis.
Polyunsaturated fatty acids such as arachidonic acid are indispensable components of innate immune signaling. Plasmalogens are glycerophospholipids with a vinyl ether bond in the sn-1 position of the glycerol backbone instead of the more common sn-1 ester bond present in "classical" glycerophospholipids. This kind of phospholipid is particularly rich in polyunsaturated fatty acids, especially arachidonic acid. In addition to or independently of the role of plasmalogens as major providers of free arachidonic acid for eicosanoid synthesis, plasmalogens also perform a varied number of functions. Membrane plasmalogen levels may determine parameters of the plasma membrane, such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages. Also, plasmalogens may be instrumental for the execution of ferroptosis. This is a nonapoptotic form of cell death that is associated with oxidative stress. This review discusses recent data suggesting that, beyond their involvement in the cellular metabolism of arachidonic acid, the cells maintain stable pools of plasmalogens rich in polyunsaturated fatty acids for executing specific responses.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.