{"title":"高电荷蛋白质形成生物冷凝物的驱动力:二元复合物形成的热力学分析。","authors":"Matthias Ballauff","doi":"10.3390/biom14111421","DOIUrl":null,"url":null,"abstract":"<p><p>A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (-44 and +53, respectively) and form complexes at physiological salt concentrations with high affinities. The data obtained for the binary complex formation are analyzed by a thermodynamic model that is based on counterion condensation modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly bound to ProTα is the main driving force, and effects related to water release play no role within the limits of error. A strongly negative Δ<i>c<sub>p</sub></i> (=-0.87 kJ/(K mol)) is found, which is due to the loss of conformational degrees of freedom.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592313/pdf/","citationCount":"0","resultStr":"{\"title\":\"Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation.\",\"authors\":\"Matthias Ballauff\",\"doi\":\"10.3390/biom14111421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (-44 and +53, respectively) and form complexes at physiological salt concentrations with high affinities. The data obtained for the binary complex formation are analyzed by a thermodynamic model that is based on counterion condensation modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly bound to ProTα is the main driving force, and effects related to water release play no role within the limits of error. A strongly negative Δ<i>c<sub>p</sub></i> (=-0.87 kJ/(K mol)) is found, which is due to the loss of conformational degrees of freedom.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111421\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111421","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation.
A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (-44 and +53, respectively) and form complexes at physiological salt concentrations with high affinities. The data obtained for the binary complex formation are analyzed by a thermodynamic model that is based on counterion condensation modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly bound to ProTα is the main driving force, and effects related to water release play no role within the limits of error. A strongly negative Δcp (=-0.87 kJ/(K mol)) is found, which is due to the loss of conformational degrees of freedom.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.