有机体作为研究皮肤老化的工具:机制、应用和见解。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2024-11-12 DOI:10.3390/biom14111436
Xin-Yu Wang, Qian-Nan Jia, Jun Li, He-Yi Zheng
{"title":"有机体作为研究皮肤老化的工具:机制、应用和见解。","authors":"Xin-Yu Wang, Qian-Nan Jia, Jun Li, He-Yi Zheng","doi":"10.3390/biom14111436","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids have emerged as transformative tools in biomedical research, renowned for their ability to replicate the complexity construct of human tissues. Skin aging is a multifaceted biological process, influenced by both intrinsic factors and extrinsic factors. Traditional models for studying skin aging often fall short in capturing the intricate dynamics of human skin. In contrast, skin organoids offer a more physiologically relevant system, reflecting the structural and functional characteristics of native skin. These characteristics make skin organoids highly suitable for studying the mechanisms of skin aging, identifying novel therapeutic targets, and testing anti-aging interventions. Despite their promise, challenges such as limited scalability, reproducibility, and ethical considerations remain. Addressing these hurdles through interdisciplinary research and technological advancements will be essential to maximizing the potential of skin organoids for dermatological research and personalized anti-aging therapies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Organoids as Tools for Investigating Skin Aging: Mechanisms, Applications, and Insights.\",\"authors\":\"Xin-Yu Wang, Qian-Nan Jia, Jun Li, He-Yi Zheng\",\"doi\":\"10.3390/biom14111436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoids have emerged as transformative tools in biomedical research, renowned for their ability to replicate the complexity construct of human tissues. Skin aging is a multifaceted biological process, influenced by both intrinsic factors and extrinsic factors. Traditional models for studying skin aging often fall short in capturing the intricate dynamics of human skin. In contrast, skin organoids offer a more physiologically relevant system, reflecting the structural and functional characteristics of native skin. These characteristics make skin organoids highly suitable for studying the mechanisms of skin aging, identifying novel therapeutic targets, and testing anti-aging interventions. Despite their promise, challenges such as limited scalability, reproducibility, and ethical considerations remain. Addressing these hurdles through interdisciplinary research and technological advancements will be essential to maximizing the potential of skin organoids for dermatological research and personalized anti-aging therapies.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111436\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111436","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有机体因其复制人体组织复杂结构的能力而成为生物医学研究的变革性工具。皮肤衰老是一个多方面的生物过程,受到内在因素和外在因素的影响。研究皮肤衰老的传统模型往往无法捕捉到人体皮肤的复杂动态。相比之下,皮肤器官组织提供了一个更贴近生理的系统,反映了原生皮肤的结构和功能特征。这些特点使皮肤器官组织非常适合研究皮肤衰老机制、确定新的治疗靶点和测试抗衰老干预措施。尽管它们大有可为,但仍面临着可扩展性有限、可重复性和伦理考虑等挑战。通过跨学科研究和技术进步来解决这些障碍,对于最大限度地发挥皮肤器官组织在皮肤病学研究和个性化抗衰老疗法中的潜力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organoids as Tools for Investigating Skin Aging: Mechanisms, Applications, and Insights.

Organoids have emerged as transformative tools in biomedical research, renowned for their ability to replicate the complexity construct of human tissues. Skin aging is a multifaceted biological process, influenced by both intrinsic factors and extrinsic factors. Traditional models for studying skin aging often fall short in capturing the intricate dynamics of human skin. In contrast, skin organoids offer a more physiologically relevant system, reflecting the structural and functional characteristics of native skin. These characteristics make skin organoids highly suitable for studying the mechanisms of skin aging, identifying novel therapeutic targets, and testing anti-aging interventions. Despite their promise, challenges such as limited scalability, reproducibility, and ethical considerations remain. Addressing these hurdles through interdisciplinary research and technological advancements will be essential to maximizing the potential of skin organoids for dermatological research and personalized anti-aging therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信