Justyna D Kryś, Maksymilian Głowacki, Piotr Śmieja, Dominik Gront
{"title":"deepBBQ:蛋白质骨架重构的深度学习方法。","authors":"Justyna D Kryś, Maksymilian Głowacki, Piotr Śmieja, Dominik Gront","doi":"10.3390/biom14111448","DOIUrl":null,"url":null,"abstract":"<p><p>Coarse-grained models have provided researchers with greatly improved computational efficiency in modeling structures and dynamics of biomacromolecules, but, to be practically useful, they need fast and accurate conversion methods back to the all-atom representation. Reconstruction of atomic details may also be required in the case of some experimental methods, like electron microscopy, which may provide Cα-only structures. In this contribution, we present a new method for recovery of all backbone atom positions from just the Cα coordinates. Our approach, called deepBBQ, uses a deep convolutional neural network to predict a single internal coordinate per peptide plate, based on Cα trace geometric features, and then proceeds to recalculate the cartesian coordinates based on the assumption that the peptide plate atoms lie in the same plane. Extensive comparison with similar programs shows that our solution is accurate and cost-efficient. The deepBBQ program is available as part of the open-source bioinformatics toolkit Bioshell and is free for download and the documentation is available online.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592026/pdf/","citationCount":"0","resultStr":"{\"title\":\"deepBBQ: A Deep Learning Approach to the Protein Backbone Reconstruction.\",\"authors\":\"Justyna D Kryś, Maksymilian Głowacki, Piotr Śmieja, Dominik Gront\",\"doi\":\"10.3390/biom14111448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coarse-grained models have provided researchers with greatly improved computational efficiency in modeling structures and dynamics of biomacromolecules, but, to be practically useful, they need fast and accurate conversion methods back to the all-atom representation. Reconstruction of atomic details may also be required in the case of some experimental methods, like electron microscopy, which may provide Cα-only structures. In this contribution, we present a new method for recovery of all backbone atom positions from just the Cα coordinates. Our approach, called deepBBQ, uses a deep convolutional neural network to predict a single internal coordinate per peptide plate, based on Cα trace geometric features, and then proceeds to recalculate the cartesian coordinates based on the assumption that the peptide plate atoms lie in the same plane. Extensive comparison with similar programs shows that our solution is accurate and cost-efficient. The deepBBQ program is available as part of the open-source bioinformatics toolkit Bioshell and is free for download and the documentation is available online.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592026/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14111448\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111448","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
deepBBQ: A Deep Learning Approach to the Protein Backbone Reconstruction.
Coarse-grained models have provided researchers with greatly improved computational efficiency in modeling structures and dynamics of biomacromolecules, but, to be practically useful, they need fast and accurate conversion methods back to the all-atom representation. Reconstruction of atomic details may also be required in the case of some experimental methods, like electron microscopy, which may provide Cα-only structures. In this contribution, we present a new method for recovery of all backbone atom positions from just the Cα coordinates. Our approach, called deepBBQ, uses a deep convolutional neural network to predict a single internal coordinate per peptide plate, based on Cα trace geometric features, and then proceeds to recalculate the cartesian coordinates based on the assumption that the peptide plate atoms lie in the same plane. Extensive comparison with similar programs shows that our solution is accurate and cost-efficient. The deepBBQ program is available as part of the open-source bioinformatics toolkit Bioshell and is free for download and the documentation is available online.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.