Robin Schulte, Dustin Schade, Thomas Paululat, Till J B Zähringer, Christoph Kerzig, Heiko Ihmels
{"title":"用炔桥扩展单芳基取代的降冰片二烯的π系统:对光化学转化和光能储存的影响。","authors":"Robin Schulte, Dustin Schade, Thomas Paululat, Till J B Zähringer, Christoph Kerzig, Heiko Ihmels","doi":"10.3762/bjoc.20.254","DOIUrl":null,"url":null,"abstract":"<p><p>The photochromic norbornadiene/quadricyclane pair is a promising system for molecular solar thermal (MOST) energy storage, with which solar energy may be converted, stored, and released as heat in one integral molecular system. Herein, we present the synthesis of mono-, bis-, and tris-norbornadiene derivatives with alkynylbenzene and alkynylnaphthalene core units, along with studies of their photochemical properties. The target compounds were synthesized by Sonogashira-Hagihara coupling reactions of 2-bromonorbornadiene and the corresponding arylacetylenes. The norbornadienes showed absorption maxima in the range of 310-345 nm and long-wavelength zero onsets of up to 420 nm. The photoisomerization quantum yields were as high as 59% per photoisomerization event and the resulting quadricyclanes showed half-lives of up to 8 h at room temperature. Furthermore, the norbornadienes were transformed quantitatively into their quadricyclane photoproducts by irradiation with green light (520 nm) in the presence of a photosensitizer.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"20 ","pages":"3061-3068"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590010/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extension of the π-system of monoaryl-substituted norbornadienes with acetylene bridges: influence on the photochemical conversion and storage of light energy.\",\"authors\":\"Robin Schulte, Dustin Schade, Thomas Paululat, Till J B Zähringer, Christoph Kerzig, Heiko Ihmels\",\"doi\":\"10.3762/bjoc.20.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The photochromic norbornadiene/quadricyclane pair is a promising system for molecular solar thermal (MOST) energy storage, with which solar energy may be converted, stored, and released as heat in one integral molecular system. Herein, we present the synthesis of mono-, bis-, and tris-norbornadiene derivatives with alkynylbenzene and alkynylnaphthalene core units, along with studies of their photochemical properties. The target compounds were synthesized by Sonogashira-Hagihara coupling reactions of 2-bromonorbornadiene and the corresponding arylacetylenes. The norbornadienes showed absorption maxima in the range of 310-345 nm and long-wavelength zero onsets of up to 420 nm. The photoisomerization quantum yields were as high as 59% per photoisomerization event and the resulting quadricyclanes showed half-lives of up to 8 h at room temperature. Furthermore, the norbornadienes were transformed quantitatively into their quadricyclane photoproducts by irradiation with green light (520 nm) in the presence of a photosensitizer.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"20 \",\"pages\":\"3061-3068\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.20.254\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.20.254","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Extension of the π-system of monoaryl-substituted norbornadienes with acetylene bridges: influence on the photochemical conversion and storage of light energy.
The photochromic norbornadiene/quadricyclane pair is a promising system for molecular solar thermal (MOST) energy storage, with which solar energy may be converted, stored, and released as heat in one integral molecular system. Herein, we present the synthesis of mono-, bis-, and tris-norbornadiene derivatives with alkynylbenzene and alkynylnaphthalene core units, along with studies of their photochemical properties. The target compounds were synthesized by Sonogashira-Hagihara coupling reactions of 2-bromonorbornadiene and the corresponding arylacetylenes. The norbornadienes showed absorption maxima in the range of 310-345 nm and long-wavelength zero onsets of up to 420 nm. The photoisomerization quantum yields were as high as 59% per photoisomerization event and the resulting quadricyclanes showed half-lives of up to 8 h at room temperature. Furthermore, the norbornadienes were transformed quantitatively into their quadricyclane photoproducts by irradiation with green light (520 nm) in the presence of a photosensitizer.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.