{"title":"微生物天然产物的化学结构元组学:非核糖体肽及其他调查。","authors":"Thomas Ma, John Chu","doi":"10.3762/bjoc.20.253","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactivity-guided fractionation (BGF) has historically been a fruitful natural product discovery workflow. However, it is plagued by increasing rediscovery rates in recent years and new methods capable of exploring the natural product chemical space more broadly and more efficiently is in urgent need. Chemical structure metagenomics as one such method is the theme of this Perspective. It emphasizes a chemical-structure-centered viewpoint toward natural product research. Key to chemical structure metagenomics is the ability to predict the structure of a natural product based on its biosynthetic gene sequences, which facilitated the discovery of numerous new bioactive molecules and helped uncover oversampled/underexplored niches of decades of BGF based discovery. While microbial nonribosomal peptides have been the focus of chemical structure metagenomics efforts thus far, it is in principle applicable to other natural product families. The future outlook of this new approach will also be discussed.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"20 ","pages":"3050-3060"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590018/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical structure metagenomics of microbial natural products: surveying nonribosomal peptides and beyond.\",\"authors\":\"Thomas Ma, John Chu\",\"doi\":\"10.3762/bjoc.20.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioactivity-guided fractionation (BGF) has historically been a fruitful natural product discovery workflow. However, it is plagued by increasing rediscovery rates in recent years and new methods capable of exploring the natural product chemical space more broadly and more efficiently is in urgent need. Chemical structure metagenomics as one such method is the theme of this Perspective. It emphasizes a chemical-structure-centered viewpoint toward natural product research. Key to chemical structure metagenomics is the ability to predict the structure of a natural product based on its biosynthetic gene sequences, which facilitated the discovery of numerous new bioactive molecules and helped uncover oversampled/underexplored niches of decades of BGF based discovery. While microbial nonribosomal peptides have been the focus of chemical structure metagenomics efforts thus far, it is in principle applicable to other natural product families. The future outlook of this new approach will also be discussed.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"20 \",\"pages\":\"3050-3060\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590018/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.20.253\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.20.253","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Chemical structure metagenomics of microbial natural products: surveying nonribosomal peptides and beyond.
Bioactivity-guided fractionation (BGF) has historically been a fruitful natural product discovery workflow. However, it is plagued by increasing rediscovery rates in recent years and new methods capable of exploring the natural product chemical space more broadly and more efficiently is in urgent need. Chemical structure metagenomics as one such method is the theme of this Perspective. It emphasizes a chemical-structure-centered viewpoint toward natural product research. Key to chemical structure metagenomics is the ability to predict the structure of a natural product based on its biosynthetic gene sequences, which facilitated the discovery of numerous new bioactive molecules and helped uncover oversampled/underexplored niches of decades of BGF based discovery. While microbial nonribosomal peptides have been the focus of chemical structure metagenomics efforts thus far, it is in principle applicable to other natural product families. The future outlook of this new approach will also be discussed.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.