Ning Kong, Cong Luo, Mengjia Wang, Junyan Zhao, Xiang Li, Lingling Wang, Linsheng Song
{"title":"锌吸收转运体 ZIP1-II 参与了太平洋牡蛎肝胰腺中的锌积累过程","authors":"Ning Kong, Cong Luo, Mengjia Wang, Junyan Zhao, Xiang Li, Lingling Wang, Linsheng Song","doi":"10.1007/s10126-024-10379-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Pacific oyster <i>Crassostrea gigas</i> is known to have an exceptional ability to accumulate zinc, which endows it with robust resistance to pathogens and makes it an excellent source of dietary zinc. ZIP1 has been identified as an important zinc uptake protein in other species, but its role in oysters remains unclear. In the present study, a ZIP1 homologue (<i>Cg</i>ZIP1-II) of the Zrt/Irt-like protein (ZIP) family was identified in <i>C</i>. <i>gigas</i>. The mRNA transcripts of <i>Cg</i>ZIP1-II were constitutively expressed in examined tissues of <i>C. gigas</i>, with higher levels in the hepatopancreas and gill. After zinc exposure, the mRNA transcripts of <i>Cg</i>ZIP1-II in the hepatopancreas showed a significant decline from 12 h to 14 d, while those in the gill significantly decreased at 72 h, followed by a recovery to basal level at 7 to 14 d. Immunocytochemical analysis revealed that the <i>Cg</i>ZIP1-II protein was mainly located at the plasma membrane of oyster hemocytes. Compared to the control cells, overexpression of <i>Cg</i>ZIP1-II in the transfected HEK293 cells resulted in a 2.44-fold (<i>p</i> < 0.05) increase in zinc content after incubation with 100 μM zinc for 24 h. Inhibition of endogenous <i>Cg</i>ZIP1-II expression with siRNAs led to a 42% reduction in zinc content in the hepatopancreas of oysters. Similarly, in vivo blocking of <i>Cg</i>ZIP1-II with anti-<i>Cg</i>ZIP1-II antibody caused a 43% decrease in zinc content in the hepatopancreas. These results collectively indicated that <i>Cg</i>ZIP1-II functioned as a zinc uptake transporter in <i>C. gigas</i> and played a certain role in zinc accumulation.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Zinc Uptake Transporter ZIP1-II Is Involved in Zinc Accumulation in the Hepatopancreas of Pacific Oyster Crassostrea gigas\",\"authors\":\"Ning Kong, Cong Luo, Mengjia Wang, Junyan Zhao, Xiang Li, Lingling Wang, Linsheng Song\",\"doi\":\"10.1007/s10126-024-10379-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Pacific oyster <i>Crassostrea gigas</i> is known to have an exceptional ability to accumulate zinc, which endows it with robust resistance to pathogens and makes it an excellent source of dietary zinc. ZIP1 has been identified as an important zinc uptake protein in other species, but its role in oysters remains unclear. In the present study, a ZIP1 homologue (<i>Cg</i>ZIP1-II) of the Zrt/Irt-like protein (ZIP) family was identified in <i>C</i>. <i>gigas</i>. The mRNA transcripts of <i>Cg</i>ZIP1-II were constitutively expressed in examined tissues of <i>C. gigas</i>, with higher levels in the hepatopancreas and gill. After zinc exposure, the mRNA transcripts of <i>Cg</i>ZIP1-II in the hepatopancreas showed a significant decline from 12 h to 14 d, while those in the gill significantly decreased at 72 h, followed by a recovery to basal level at 7 to 14 d. Immunocytochemical analysis revealed that the <i>Cg</i>ZIP1-II protein was mainly located at the plasma membrane of oyster hemocytes. Compared to the control cells, overexpression of <i>Cg</i>ZIP1-II in the transfected HEK293 cells resulted in a 2.44-fold (<i>p</i> < 0.05) increase in zinc content after incubation with 100 μM zinc for 24 h. Inhibition of endogenous <i>Cg</i>ZIP1-II expression with siRNAs led to a 42% reduction in zinc content in the hepatopancreas of oysters. Similarly, in vivo blocking of <i>Cg</i>ZIP1-II with anti-<i>Cg</i>ZIP1-II antibody caused a 43% decrease in zinc content in the hepatopancreas. These results collectively indicated that <i>Cg</i>ZIP1-II functioned as a zinc uptake transporter in <i>C. gigas</i> and played a certain role in zinc accumulation.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10379-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10379-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A Zinc Uptake Transporter ZIP1-II Is Involved in Zinc Accumulation in the Hepatopancreas of Pacific Oyster Crassostrea gigas
The Pacific oyster Crassostrea gigas is known to have an exceptional ability to accumulate zinc, which endows it with robust resistance to pathogens and makes it an excellent source of dietary zinc. ZIP1 has been identified as an important zinc uptake protein in other species, but its role in oysters remains unclear. In the present study, a ZIP1 homologue (CgZIP1-II) of the Zrt/Irt-like protein (ZIP) family was identified in C. gigas. The mRNA transcripts of CgZIP1-II were constitutively expressed in examined tissues of C. gigas, with higher levels in the hepatopancreas and gill. After zinc exposure, the mRNA transcripts of CgZIP1-II in the hepatopancreas showed a significant decline from 12 h to 14 d, while those in the gill significantly decreased at 72 h, followed by a recovery to basal level at 7 to 14 d. Immunocytochemical analysis revealed that the CgZIP1-II protein was mainly located at the plasma membrane of oyster hemocytes. Compared to the control cells, overexpression of CgZIP1-II in the transfected HEK293 cells resulted in a 2.44-fold (p < 0.05) increase in zinc content after incubation with 100 μM zinc for 24 h. Inhibition of endogenous CgZIP1-II expression with siRNAs led to a 42% reduction in zinc content in the hepatopancreas of oysters. Similarly, in vivo blocking of CgZIP1-II with anti-CgZIP1-II antibody caused a 43% decrease in zinc content in the hepatopancreas. These results collectively indicated that CgZIP1-II functioned as a zinc uptake transporter in C. gigas and played a certain role in zinc accumulation.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.