{"title":"在生化过程的集体变量发现中筛选快速运动模式","authors":"Donghui Shao, Zhiteng Zhang, Xuyang Liu, Haohao Fu, Xueguang Shao, Wensheng Cai","doi":"10.1021/acs.jctc.4c01282","DOIUrl":null,"url":null,"abstract":"<p><p>Collective variables (CVs) describing slow degrees of freedom (DOFs) in biomolecular assemblies are crucial for analyzing molecular dynamics trajectories, creating Markov models and performing CV-based enhanced sampling simulations. While time-lagged independent component analysis (tICA) and its nonlinear successor, time-lagged autoencoder (tAE), are widely used, they often struggle to capture protein dynamics due to interference from random fluctuations along fast DOFs. To address this issue, we propose a novel approach integrating discrete wavelet transform (DWT) with dimensionality reduction techniques. DWT effectively separates fast and slow motion in protein simulation trajectories by decoupling high- and low-frequency signals. Based on the trajectory after filtering out high-frequency signals, which corresponds to fast motion, tICA and tAE can accurately extract CVs representing slow DOFs, providing reliable insights into protein dynamics. Our method demonstrates superior performance in identifying CVs that distinguish metastable states compared to standard tICA and tAE, as validated through analyses of conformational changes of alanine dipeptide and tripeptide and folding of CLN025. Moreover, we show that DWT can be used to improve the performance of a variety of CV-finding algorithms by combining it with Deep-tICA, a cutting-edge CV-finding algorithm, to extract CVs for enhanced-sampling calculations. Given its negligible computational cost and remarkable ability to screen fast motion, we propose DWT as a \"free lunch\" for CV extraction, applicable to a wide range of CV-finding algorithms.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10393-10405"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening Fast-Mode Motion in Collective Variable Discovery for Biochemical Processes.\",\"authors\":\"Donghui Shao, Zhiteng Zhang, Xuyang Liu, Haohao Fu, Xueguang Shao, Wensheng Cai\",\"doi\":\"10.1021/acs.jctc.4c01282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collective variables (CVs) describing slow degrees of freedom (DOFs) in biomolecular assemblies are crucial for analyzing molecular dynamics trajectories, creating Markov models and performing CV-based enhanced sampling simulations. While time-lagged independent component analysis (tICA) and its nonlinear successor, time-lagged autoencoder (tAE), are widely used, they often struggle to capture protein dynamics due to interference from random fluctuations along fast DOFs. To address this issue, we propose a novel approach integrating discrete wavelet transform (DWT) with dimensionality reduction techniques. DWT effectively separates fast and slow motion in protein simulation trajectories by decoupling high- and low-frequency signals. Based on the trajectory after filtering out high-frequency signals, which corresponds to fast motion, tICA and tAE can accurately extract CVs representing slow DOFs, providing reliable insights into protein dynamics. Our method demonstrates superior performance in identifying CVs that distinguish metastable states compared to standard tICA and tAE, as validated through analyses of conformational changes of alanine dipeptide and tripeptide and folding of CLN025. Moreover, we show that DWT can be used to improve the performance of a variety of CV-finding algorithms by combining it with Deep-tICA, a cutting-edge CV-finding algorithm, to extract CVs for enhanced-sampling calculations. Given its negligible computational cost and remarkable ability to screen fast motion, we propose DWT as a \\\"free lunch\\\" for CV extraction, applicable to a wide range of CV-finding algorithms.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10393-10405\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Screening Fast-Mode Motion in Collective Variable Discovery for Biochemical Processes.
Collective variables (CVs) describing slow degrees of freedom (DOFs) in biomolecular assemblies are crucial for analyzing molecular dynamics trajectories, creating Markov models and performing CV-based enhanced sampling simulations. While time-lagged independent component analysis (tICA) and its nonlinear successor, time-lagged autoencoder (tAE), are widely used, they often struggle to capture protein dynamics due to interference from random fluctuations along fast DOFs. To address this issue, we propose a novel approach integrating discrete wavelet transform (DWT) with dimensionality reduction techniques. DWT effectively separates fast and slow motion in protein simulation trajectories by decoupling high- and low-frequency signals. Based on the trajectory after filtering out high-frequency signals, which corresponds to fast motion, tICA and tAE can accurately extract CVs representing slow DOFs, providing reliable insights into protein dynamics. Our method demonstrates superior performance in identifying CVs that distinguish metastable states compared to standard tICA and tAE, as validated through analyses of conformational changes of alanine dipeptide and tripeptide and folding of CLN025. Moreover, we show that DWT can be used to improve the performance of a variety of CV-finding algorithms by combining it with Deep-tICA, a cutting-edge CV-finding algorithm, to extract CVs for enhanced-sampling calculations. Given its negligible computational cost and remarkable ability to screen fast motion, we propose DWT as a "free lunch" for CV extraction, applicable to a wide range of CV-finding algorithms.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.