金属有机框架中某些金属节点的通用力场参数集精炼。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2024-12-10 Epub Date: 2024-11-27 DOI:10.1021/acs.jctc.4c01113
Yutao Li, Xin Jin, Elias Moubarak, Berend Smit
{"title":"金属有机框架中某些金属节点的通用力场参数集精炼。","authors":"Yutao Li, Xin Jin, Elias Moubarak, Berend Smit","doi":"10.1021/acs.jctc.4c01113","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) exhibit promise as porous materials for carbon capture due to their design versatility and large pore sizes. The generic force fields (e.g., UFF and Dreiding) use one universal set of Lennard-Jones parameters for each element, while MOFs have a much richer local chemical environment than those chemical environments used to fit the UFF. When MOFs contain hard-Lewis acid metals, UFF systematically overestimates CO<sub>2</sub> uptakes. To address this, we developed a workflow to affordably and efficiently generate reliable force fields to predict CO<sub>2</sub> adsorption isotherms of MOFs containing metals from groups IIA (Mg, Ca, Sr, and Ba) and IIIA (Al, Ga, and In), connected to various carboxylate ligands. This method uses experimental isotherms as input. The optimal parameters are obtained by minimizing the loss function of the experimental and simulated isotherms, in which we use the Multistate Bennett Acceptance Ratio (MBAR) theory to derive the functionality relationship of loss functions in terms of force field parameters.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10540-10552"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635978/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Refined Set of Universal Force Field Parameters for Some Metal Nodes in Metal-Organic Frameworks.\",\"authors\":\"Yutao Li, Xin Jin, Elias Moubarak, Berend Smit\",\"doi\":\"10.1021/acs.jctc.4c01113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal-organic frameworks (MOFs) exhibit promise as porous materials for carbon capture due to their design versatility and large pore sizes. The generic force fields (e.g., UFF and Dreiding) use one universal set of Lennard-Jones parameters for each element, while MOFs have a much richer local chemical environment than those chemical environments used to fit the UFF. When MOFs contain hard-Lewis acid metals, UFF systematically overestimates CO<sub>2</sub> uptakes. To address this, we developed a workflow to affordably and efficiently generate reliable force fields to predict CO<sub>2</sub> adsorption isotherms of MOFs containing metals from groups IIA (Mg, Ca, Sr, and Ba) and IIIA (Al, Ga, and In), connected to various carboxylate ligands. This method uses experimental isotherms as input. The optimal parameters are obtained by minimizing the loss function of the experimental and simulated isotherms, in which we use the Multistate Bennett Acceptance Ratio (MBAR) theory to derive the functionality relationship of loss functions in terms of force field parameters.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10540-10552\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01113\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)因其设计的多样性和大孔径而有望成为碳捕集的多孔材料。通用力场(如 UFF 和 Dreiding)对每种元素都使用一套通用的伦纳德-琼斯参数,而 MOFs 的局部化学环境要比用于拟合 UFF 的化学环境丰富得多。当 MOF 含有硬路易斯酸金属时,UFF 会系统性地高估二氧化碳吸收量。为了解决这个问题,我们开发了一种工作流程,可以经济高效地生成可靠的力场,以预测含有 IIA 族(镁、钙、锶和钡)和 IIIA 族(铝、镓和铟)金属并与各种羧酸配体相连的 MOF 的二氧化碳吸附等温线。该方法使用实验等温线作为输入。通过最小化实验等温线和模拟等温线的损失函数来获得最佳参数,其中我们使用了多态贝内特接受比(MBAR)理论来推导损失函数在力场参数方面的功能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Refined Set of Universal Force Field Parameters for Some Metal Nodes in Metal-Organic Frameworks.

Metal-organic frameworks (MOFs) exhibit promise as porous materials for carbon capture due to their design versatility and large pore sizes. The generic force fields (e.g., UFF and Dreiding) use one universal set of Lennard-Jones parameters for each element, while MOFs have a much richer local chemical environment than those chemical environments used to fit the UFF. When MOFs contain hard-Lewis acid metals, UFF systematically overestimates CO2 uptakes. To address this, we developed a workflow to affordably and efficiently generate reliable force fields to predict CO2 adsorption isotherms of MOFs containing metals from groups IIA (Mg, Ca, Sr, and Ba) and IIIA (Al, Ga, and In), connected to various carboxylate ligands. This method uses experimental isotherms as input. The optimal parameters are obtained by minimizing the loss function of the experimental and simulated isotherms, in which we use the Multistate Bennett Acceptance Ratio (MBAR) theory to derive the functionality relationship of loss functions in terms of force field parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信