{"title":"锌离子电池高熵材料的设计理念。","authors":"Kaisheng Sun, Jiaru Li, Liang Li, Danming Chao","doi":"10.1002/chem.202402859","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc-ion batteries have emerged as strong candidates for replacing Li/Na-ion batteries owing to their high safety and environmental friendliness. However, the large electrostatic repulsion between the cathode and Zn<sup>2+</sup>, the irreversible growth of zinc dendrites at the anode, and the hydrogen precipitation side reaction in the aqueous electrolyte have hindered the practical application of zinc ion batteries. Fortunately, the emergence of the revolutionary concept of high entropy has provided new opportunities for the development of battery materials. High-entropy materials, with their unique atomic structures and uniform distribution of multiple elements, offer flexible options for material compositions and electronic structures, thus attracting significant attention in battery systems. In this concept article, we summarize the definitions and intrinsic structural characteristics of high-entropy materials and provide a detailed overview of the latest design concepts from the perspectives of cathodes, anodes, and electrolytes. Finally, we outline the challenges faced by high-entropy materials and potential solutions to guide researchers in developing efficient and stable zinc-ion batteries.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202402859"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Concepts of High-Entropy Materials for Zinc Ion Batteries.\",\"authors\":\"Kaisheng Sun, Jiaru Li, Liang Li, Danming Chao\",\"doi\":\"10.1002/chem.202402859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc-ion batteries have emerged as strong candidates for replacing Li/Na-ion batteries owing to their high safety and environmental friendliness. However, the large electrostatic repulsion between the cathode and Zn<sup>2+</sup>, the irreversible growth of zinc dendrites at the anode, and the hydrogen precipitation side reaction in the aqueous electrolyte have hindered the practical application of zinc ion batteries. Fortunately, the emergence of the revolutionary concept of high entropy has provided new opportunities for the development of battery materials. High-entropy materials, with their unique atomic structures and uniform distribution of multiple elements, offer flexible options for material compositions and electronic structures, thus attracting significant attention in battery systems. In this concept article, we summarize the definitions and intrinsic structural characteristics of high-entropy materials and provide a detailed overview of the latest design concepts from the perspectives of cathodes, anodes, and electrolytes. Finally, we outline the challenges faced by high-entropy materials and potential solutions to guide researchers in developing efficient and stable zinc-ion batteries.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202402859\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202402859\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202402859","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design Concepts of High-Entropy Materials for Zinc Ion Batteries.
Zinc-ion batteries have emerged as strong candidates for replacing Li/Na-ion batteries owing to their high safety and environmental friendliness. However, the large electrostatic repulsion between the cathode and Zn2+, the irreversible growth of zinc dendrites at the anode, and the hydrogen precipitation side reaction in the aqueous electrolyte have hindered the practical application of zinc ion batteries. Fortunately, the emergence of the revolutionary concept of high entropy has provided new opportunities for the development of battery materials. High-entropy materials, with their unique atomic structures and uniform distribution of multiple elements, offer flexible options for material compositions and electronic structures, thus attracting significant attention in battery systems. In this concept article, we summarize the definitions and intrinsic structural characteristics of high-entropy materials and provide a detailed overview of the latest design concepts from the perspectives of cathodes, anodes, and electrolytes. Finally, we outline the challenges faced by high-entropy materials and potential solutions to guide researchers in developing efficient and stable zinc-ion batteries.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.